《小数乘小数教学设计【21篇】》
作为一位兢兢业业的人民教师,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。那要怎么写好教案呢?
小数乘小数教学设计通用 1
教学内容:
苏教版《义务教育课程标准实验教科书数学》五年级上册第86~87页。
教学目标:
1、让学生借助已有经验探索小数乘小数的计算方法,并在师生互动中理解算理,能正确地用竖式计算小数乘小数。
2、让学生经历探索计算方法的过程,培养其初步的推理能力和抽象概括能力。
3、使学生体会数学知识之间的内在联系,感受转化思想的魅力,增强学好数学的兴趣。
教学重点:
理解并掌握小数乘小数的计算方法。
教学难点:
确定积的小数位数。
教学过程:
一、基本练习
口算下面各题。
5×0.520×0.41.1×4
0.39×1001.8×10×10237÷100
[评析:口算练习应贯穿计算教学的始终,加强口算练习,能有效提高学生的笔算能力。这里的基本练习,还为学生学习新知找出了理论依据和最近发展区。]
二、探究新知
1、引入。
课件出示情境图。(小明房间、阳台平面图)
师:小明家最近换了新房子。同学们请看,这是小明房间和阳台的平面图。根据图中的数据你能提出哪些数学问题?(房间的面积有多大?阳台的面积有多大?房间和阳台一共多少平方米?……)
师:同学们提出了很多有价值的问题。如果要求房间的面积有多大,该怎样列式呢?(板书:3.6×2.8)这道算式和我们以前学习的小数乘法有什么不同?(两个因数都是小数)
师:今天这节课我们一起来探讨小数乘小数的计算方法。
板书课题:小数乘小数
2、估算。
师:同学们不妨先估计一下小明房间的面积有多大。
学生的估计可能有下面几种情况:
①3×3=9。把3.6和2.8分别看成与它们比较接近的整数,把3.6看小,把2、8看大,所以面积在9平方米左右;
②4×3=12。把3.6和2.8分别看成与它们最接近的整数,把两个数都看大了,所以面积比12平方米小;
③3.6×3=10.8。面积和10.8平方米接近。
通过交流,让学生明确房间的面积一定比12平方米小,并且在9平方米左右。
3、试算。
师:3.6×2.8的积究竟是多少?你能试着用竖式计算吗?
教师巡视,了解试做情况,并给试算有困难的同学以引导、提示:把两个小数都看成整数计算。
教师选取不同的结果板书在黑板上。学生可能出现以下两种情况:
师:根据估计的结果,大家一致认为10.08是合理的答案,同学们真善于动脑筋思考。看来问题的关键是积的小数位数。
4、明理。
师:谁愿意说一说3.6×2.8的积为什么是两位小数?
学生可能出现两种解释:
①把3.6米和2.8米分别写成分米作单位,算出面积1008平方分米,再还原成平方米作单位,所以积是两位小数;
②运用积的变化规律和小数点位置移动的规律,把3、6看成36是把3、6乘10,2、8看成28是把2、8乘10,两个因数分别乘10,算出的积1008就等于原来的积乘100,要得到原来的积,就要用1008除以100,所以积是10.08。
《小数乘小数》的教学设计 2
教学内容:
P70页例7及“试一试和练一练”,练习十二2、3题。
教学目标:
使学生理解小数乘小数的意义,掌握小数乘小数的计算法则,能正确运用计算法则计算小数乘小数的乘法,培养学生的合作能力和迁移类推能力。
教学重点:
正确运用计算法则计算小数乘小数的乘法
教学难点:
理解小数乘小数的意义,掌握小数乘小数的计算法则
教学过程
一、复习
0.52+0.48=0.17+0.33=3.6+6.4=
0.8×3=3.7×5=46×0.3=
二、新授:
1、教学例7。
(1)出示例7
(2)从图中你知道了哪些信息?
(3)提问:如果要求小明房间的面积有多大?先估计一下。
3.8×3.2≈()(说一说估计的方法)
(4)提出:列竖式计算怎样算呢?
把这两个小数都看成整数,很快计结果。
3.8×1038
×3.2×10×32
7676
114÷100114
12.161216
相乘后怎样才能得到原来的积?
(4)讨论得出:两个因数分别乘10,积就扩大100倍,要想把积还原到原来,积就缩小100倍,要除以100。原来的积是12.16。
2、第65页试一试。
提出:要求阳台的面积是多少平方米?怎样列式?
计算3.2×1.15时,先把两个小数都看成整数,在积里应该怎样点上小数点?(学生尝试完成,展示学生作业)
强调:一个因数分别乘10,另一个因数乘100,积就扩大1000倍,要想把积还原到原来,积就缩小1000倍,要除以1000。原来的积是3.68
3、小数乘小数的计算法则。
(1)引导:把小数乘法转化成整数乘法来计算,两个因数与积的小数位数有什么联系?
(2)同桌讨论:说说小数乘小数应该怎样计算?
小结:小数乘法,先按整数乘法算出积,然后再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
三、巩固练习
1、完成第65页练一练第1题(说说你是如何点出积中的小数点的)
2、完成第65页练一练第2题(学生独立完成,集体校对)
3、完成练习十二第2题(对的要打“√”,不能不打。不对的要打“×”,然后再订正)
4、完成练习十二第3题。(说说数量关系,再列式计算)
四、课堂小结:今天你学到了什么知识?
教学反思:
面对学生出现的错误,使我不得不重新审视自己的课堂,并对此进行深刻反思:通过分析,我决定从以下几方面加以改进:
1、将学生的错题作为教学资源进行分析、判断,这样的改错效果好于学生改书上的错题。
2、列竖式细化。强调:①小数乘法列竖式时“末位对齐”。②求出积后,数两个因数一共有几位小数,就从积的右边起向左数出同样多的位数点上小数点。③对于计算结果,要先点小数点再划掉积末尾的0。
第七课时小数乘小数(二)
教学内容:P66页例8,“练一练”,练习十二第1、3、4、5题。
教学目标:使学生初步掌握小数乘小数的意义和计算法则,使学生掌握确定积的小数位数时,位数不够时用“0”补足;培养学生的合作意识和推理能力。
教学重点:掌握确定积的小数位数时,位数不够时用“0”补足
教学难点:确定积里小数点的位置
教学准备:课件、展台
教学过程:
一、复习:出示练习十二第4题
根据第一栏的积,写出其他各栏的积(说说是怎样想的?)
二、教学例8。
出示例8。
(1)花架的占地面积是多少平方米?怎样列式?
指名回答,师板书算式。
(2)学生试做。
0.28
《小数乘小数》教学设计 3
教学内容: 小学数学苏教版第九册第九单元小数乘法和除法(二)例1、“试一试”、“练一练”和练习十五第1-3题 。
教材分析:
这部分内容主要教学小数乘小数的计算。教材一共安排了两道例题和一个练习。本节课准备完成例1、“试一试”、“练一练”及练习十五1-3题 。
为了呈现例1,教材首先出示了“小明”房间的平面图,让学生有较为直观的感觉,然后通过问题引发学生思考,房间的面积有多大?要先估计,再计算。
其次,在学生进行估计后,教材重点组织安排学生探索笔算的方法。先告诉学生可以把算式中的两个小数都可以看成整数来计算,再结合直观图讨论:按整数相乘后,如何得到原来的积?
“试一试”也是利用例1的推论,求平面图中阳台的面积。教材通过直观图,继续呈现2.8×1.15的计算过程,但把其中的关键步骤留给学生完成,给学生思维的空间
和训练的机会。在此基础上,启发学生进行讨论:上面两题中的两个因数的小数位数与积的小数位数有什么关系?从而初步抽象出小数乘小数的计算方法。“练一练”两题就是针对小数乘小数计算方法的关键环节,让学生根据因数中的小数位数直接在乘积中点上小数点,并且让学生根据刚刚学过的方法进行独立计算练习,达到学以致用。
设计思路:
本节课在教学时,首先通过复习引入,从而自然过渡到例1的教学。在教学例1时出示情境图,让学生感知怎样计算小明房间的面积,即运用长方形的面积公式进行计算。在学生列出算式后,启发学生把“3.6×2.8”与以往学习的小数乘法进行比较,从而引导学生发现两个因数都是小数。然后让学生运用不同的方法进行估算, 接着让学生分小组进行讨论:如何来计算“3.6×2.8”?学生讨论后,教者及时小结方法板书,并且通过课件演示算法,给学生以直观的动态感知,然后引入“试一试”放手让学生探究完成,小组进行汇报,借助课件演示计算的过程。(板书)
此时为了概括出小数乘小数的计算方法。再一次让学生讨论:①刚才两题的积与因数的小数位数之间有什么关系?②怎样确定积中小数点的位置。③小数末尾的“0”该如何处理?
讨论后汇报,及时通过课件展示结论,抽象总结出“小数乘小数”的计算方法。并且强调以后在计算时可以直接使用这种方法来计算“小数乘小数”。接着不失时机地引入“练一练”的教学。运用课件出示第一题,让学生进行练习,然后再在课本上完成。第二题让三个学生板演,其他学生独立完成。强化计算的方法,强调小数末尾“0”要化简。接着出示诊断性练习三题,让学生当医生,找病因。进一步训练学生点好积中的小数点。分小组比赛,重在激发学生的兴趣,强化计算的方法着重训练乘积中小数点的定位。
最后再出示拓展练习,启发学生思考,引导探索找出方法,培养学生学习数学的乐趣。
教学目标:
1、通过学习自主探索,理解掌握小数乘小数的计算方法,并能正确进行计算。
2、在探索的过程中培养学生抽象、概括的能力。
3、体会数学知识之间的联系,感受在数学探索活动中的乐趣,进一步体会成功,增强学习数学的信心。
教学重点:小数乘小数的计算方法。
教学难点:小数乘法中,积的小数点的定位。
教学准备:多媒体课件、小黑板等
教学过程:
一、激情导入。
1、同学们上一单元我们已经学习了小数乘法,小数乘法中两个因数有什么特点?你是怎样确定积的小数点的?
2、出示口算练习。
0.6×3 8×0.9 52×0.1 4×0.25 4.03×0
(设计意图:通过复习,注重了新旧知识之间的联系。安排口算训练,重在培养学生的数感,以便运用知识的迁移,完成本节课的教学内容。)
二、教学例1。
①让一个学生读题。提问:“根据图中的有关数据你会提出哪些问题?在小组里说说。
要求小明房间的面积怎么求?运用什么面积公式?
指名列出式子。板书:3.6×2.8
②“3.6×2.8”估计是多少呢?有不同的估算方法吗?结果大约是多少?指名学生回答。
③“3.6×2.8”与上一单元学习的小数乘法有什么不同?在小组里相互说说。再请一个学生回答。
④“怎样来计算3.6×2.8?”“你有什么好的方法?”小组进行讨论。
选小组代表回答。
“可以当整数来计算。”
“可以用已教的小数乘法的方法来估算。”
“运用计算器来计算。”
大家都很爱开动脑筋,提出了这么多好的建议,那么究竟怎样来计算呢?
(设计意图:通过估计,训练学生用不同方法解决问题,培养学生思维的积极性,点燃思维的火花。探讨3.6×2.8的计算方法,在于初步让学生自己去解决有关问题,培养了学生思维的发散性,为下一步演示计算方法提供了一个依据。)
⑤综合学生的建议,用课件演示计算的方法,并进行板书。
3.6 ×10 3 6
×2.8 ×10 × 2 8
2 8 8 2 8 8
7 2 7 2
1 0.0 8 ÷100 1 0 0 8
讨论:为什么最后的1008要除以100?不除以100行吗?依据是什么?
根据讨论,进行小结。因为两个因数都乘了10,即乘了10×10=100,为了使计算的结果不变,积1008就要除以100。依据是积不变的规律。最后还要答题,以保持做题的完整性。
二、讨论“试一试”。小明房间的面积会做了,阳台的面积又如何进行计算呢?根据学生的回答,板书:2.8×1.15
“2.8×1.15”在计算时,怎样书写可以使计算过程简便一些?
运用刚才学到的方法,各自在课本上完成。
课件出示演示的过程,把学生填写的与出示的过程进行比较,这道题有什么地方要注意的吗?
①把两题进行比较:课件上出示讨论题。“上面的两题的因数的小数位数与积的小数位数之间有什么联系?”“怎样确定积中小数点的位置?”“小数末尾的‘0’如何处理?
分小组进行讨论。
让学生汇报,并及时进行补充。
“两个因数中一共有几位小数,积里也有几位小数。”
“小数末尾的“0”可以化简。”
“在积里点上小数点。”
“有谁要补充的吗?”
这时,有个学生举手,“老师,点积的小数点可以从左边点。”
“不,应该从右边点。”
这时,班上明显形成了两种对立的意见,点小数点成了矛盾的焦点,争论到了顶峰。
这是我在备课中没有考虑到的情况。我稍作冷静,对大家进行了安慰。
②“同学们,请安静,你们学习的态度,善于钻研的精神值得肯定。至于谁的说法有道理,先放一放。我们先来把两题的结果观察一下,好吗?”
出示:10.08和3.220
“把这两个数与各自的两个因数进行比较。第一题因数中有几位小数?积呢?第二题呢?看哪一组的同学观察得比较认真。”
“老师,刚才我看错了,应该从右边点起。”
我抓住时机,及时进行引导。“你知道,为什么从右边点小数点而不从左边点呢?”
火候已到,我及时设置疑问。“你能说说积中点小数点的方法好吗?”
大家纷纷举手发言。
③小结:其实大家都爱动脑筋,观察得也很仔细,学习就要这样认真才行。
课件出示:因数中一共有几位小数,就从积的右边起数出几位,点上小数点。(齐读)
“有什么要补充的吗?”
“老师,我认为还应该加上一句‘能化简的要化简’。”
“你说得真好,考虑得也很全面。”
这时又有一个学生举手。“请你站起来说说,好吗?
“在计算过程中,有简便的要用简便的方法”
“老师,还要补上:先按整数乘法算出结果是多少。”
“你们真不简单!”
(设计意图:这是本节课的重点。教学中我先设法调动学生的感官,让学生观察因数与积的小数位数的关系,初步感知确定小数点的方法。在教学时,设置疑问引发学生思考,课堂上形成了两种不同的观点,讨论、探究到了高潮,矛盾的焦点十分集中。我运用课件适时地引导学生进一步观察、比较,找出解决的方法,从而抽象出小数乘小数的计算方法。教学中引导学生观察、讨论、探究,充分发挥了学生的主体意识。合作、交流,激发了学生的思维,培养了学生抽象思维的能力,调动了学生的情感,激发了求知欲。这样,既让学生掌握了知识又训练了学生的观察和计算的能力。)
三、巩固练习:
1、课件出示课本“练一练”第1题。
先让学生观察,指名说说如何确定积的小数点。
指名回答。然后,再在书上完成。
2、课件出示“练习十五”第2题(当医生,找病根)
①“怎样进行改错,你有什么好的办法和建议?”
②先找出问题,指名改错。
③“有什么要补充的吗?”(能化简的要化简。)
3、“练一练”第2题。
分小组,比赛完成。
请学生自评,然后互评。
(设计意图:通过点积的小数点、小组比赛、反馈练习等形式,让学生进一步掌握小数乘小数的计算方法,尤其是积中的小数点的定位问题。这样既训练了学生的观察能力,比较的能力,又能训练学生主动发现问题,并设法解决相关问题的能力。)
四、拓展练习。
1、 课件出示练习:
用一根铁丝恰好能围成一个长方形。已知这个长方形的宽是1.8分米,长是宽的2.5倍,这根铁丝长多少分米?
2、读题后,让学生简要分析计算的方法。
(设计意图:通过出示拓展题,进一步巩固所学的知识,同时开阔了学生的视野,调动了学生学习的积极性。)
六、课堂作业:
练习十五第1、3题。
五、小结:
1、本节课学会了什么?
2、你还有什么问题吗?
《小数乘小数》数学教案 4
教学内容:
教材P5~6例3、练习二第1、3题。
教学目标:
1.理解并掌握小数乘小数的计算方法,会正确进行笔算。
2.在小组讨论中探究、发现、感悟小数乘小数的计算法则,提高计算能力。
3.渗透转化的数学思想,感受数学知识间的内在联系,培养科学、严谨的学习态度。
教学重点:
在理解小数乘法和小数意义的基础上掌握计算方法。
教学难点:
如何正确给乘得的积加上小数点。
教学方法:
观察、分析、比较。
教学准备:
多媒体。
教学过程
一、复习引入
1.口算。
45×324×53×4
4.5×0.32.4×53×0.4
口算后提问:比较每组算式你有什么发现?
2.列竖式计算。2.05×6
学生独立完成,指名板演,订正时让学生说一说计算的过程。
3.引入新课。我们已经掌握了小数乘整数的计算方法,那么小数乘小数又该怎样计算呢?这节课我们来探究这个问题。(板书课题:小数乘小数)
二、自主探究
1.创设情境,引入问题。
师:观察题目,说说你发现了什么?(王大爷家有一个长2.4米、宽0.8米的玉米地,每平方米可以收0.9kg的玉米。那么王大爷一共可以收多少千克玉米?)
师:你们能帮王大爷算算一共可以收多少千克的玉米吗?该怎样计算呢?
全班交流,然后说出解决问题的方法。
师:我们该如何解决问题呢?
生:要算出一共收多少千克的玉米,需要先求玉米地的面积。
师:那么怎样求玉米地的面积呢?如何列式呢?
生:长方形面积=长×宽,也就是2.4×0.8
师:这个式子中,两个因数都是小数,该如何计算呢?
生1可以用竖式计算:
生2:也可以把它们可作整数来计算。
师:那么如何求一共收多少玉米呢?
生:算式是1.92×0.9,可以仿照上面同样的方法计算。
所以一共收1.728千克玉米。
通过练习继续探究小数乘小数的一般方法。
例:5.4×1.070.45×0.6
师:同学们能说说我们在列竖式计算小数乘法时,要注意什么吗?
学生小组交流讨论,老师加以总结。
小结:所有小数右边的数一律对齐,其他小数位从右往左依次对齐。
师:看一看算式的两个因数中一共有几位小数?积呢?
生:1.07×5.4两个因数中一共有3位小数,积也有3位小数。
0.45×0.6两个因数中一共有3位小数,积也有3位小数。
2.探究小数乘法的。计算方法。完成P6例4上面的填空。
(1)先按照整数乘法算出积,再点小数点;
(2)点小数点时,看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
3.组织学生进行练习。
课本第5页“做一做”及第6页“做一做”。
三、巩固练习
1.不计算,说一说下列各题的积有几位小数。
2.3×0.40.08×0.97.3×0.06
9.1×0.030.25×0.2345.9×3.5
提问:怎样判断积有几位小数?
2.竖式计算。
6.7×0.32.4×6.22.03×7.6
5.6×2.33.7×4.63.2×2.5
学生独立计算后,指名板演并汇报自己是怎样计算的,然后集体订正。
四、课堂小结
师:请同学们想一想,我们今天学到了哪些知识?你有什么收获?在计算小数乘法时应注意什么?(学生发言,说说自己的收获,并回答问题,教师予以点评。)
五、作业
(1)完成课本练习二3题。
(2)用竖式计算。(教材第8页练习二的第1题)
《小数乘小数》教学设计 5
《小数乘小数1》当堂检测题
班级: 姓名:
教师寄语: 相信自己,你是最棒的!
一、先说出下面各题的积应该是几位小数,再点小数点。
2 . 7 3 . 6 4 . 6 6 . 3
× 0 . 3 × 0 . 9 × 0 . 3 5 × 0 . 0 6
8 1 3 2 4 2 3 0 3 7 8
二、错题门诊。
0 . 2 5 1 . 0 6 4 . 6
× 4 × 2 . 5 × 2 . 7
1 . 0 0 5 3 0 3 2 2
三、不计算,说出下表中各栏的积有几位小数。
因数
0.4
12.13
28
1.2
1.26
因数
6
0.5
0.26
3.3
0.08
四、根据24×15=360填空。
(1)2.4×15=( ) (2)2.4×1.5=( )
(3)0.24×1.5=( ) (4)0.24×0.15=( )
五、计算下面各题。
(1)8.02×2.8 (2)2.8×0.65 (3)0.25×0.08
(4)1.36×3.7 (5)1.8×3.4 (6)3.6×0.74
一、下面各题对吗?把不对的改正过来。
2.7×1.8=0.6 25×0.6=26
二、在○里填上“>”“<”或“=”。
123×0.8○123 1×0.86○1
3.18×1.2○3.18 26.3×2.1○26.3
三、河马的最长寿命是52岁,蓝鲸的最长寿命是河马的1.7倍。你能算出蓝鲸的最长寿命是多少吗?
四、张老师到商店给7名同学买奖品,一副羽毛球拍15.6元,如果每人一副,张老师买奖品共花多少元?
五、先计算,再填空。
2= 0.4=
3.2× 5= 1.7× 0.15=
1.7= 0.36=
一、用竖式计算
8 0. 8 2 3 2.3
× 3 × 3 × 4 × 4
二、列竖式计算
3.5×7 8.1×6 0.85×4
三、我会算
1.2 3 2 3. 6 1 . 7
× 6 × 5 × 2 3
四、把不对的算式改正过来
7.3×5=365 8.4×5=42.0 1.27×3=3.81
7 . 3 8 . 4 1 . 2 7
× 5 × 5 × 3
3 6 5 4 2. 0 3 8. 1
你有什么收获? 。
自我评价:一般 较好 优秀
《小数乘小数》教案 6
教学片段:
已知3628=1008
36280= 362.8= 360.28=
3.62.8=
师:观察,口答。说体会。
生1:一个因数不变另一个扩大10倍,积也扩大了10倍。
生2:362.8 28缩小10倍,是2.8。
生3:积是1位小数。
师:那么积的小数点应该点在哪里呢?
生4:点在0和8之间。
师:怎么想的?
生5:一个因数缩小10倍,另一个因数不变,积也缩小10倍,所以点在0和8之间。
生6;因数中是一位小数,所以积也是一位小数。
师:那么3.62.8呢?积大概是多少?
生7:大于6,小于12.
师:猜一猜,积是多少,小数点又应该点在哪里呢?
生:10.08。
师:用计数器验证一下。
学生用计数器验证。
师:能用竖式计算么?
让学生自主找出解决问题的办法,让学生尝试自主计算。
分析与反思:
这节课是在教学整数乘小数的知识的基础上进行教学的。唯一不同的是两个因数都是小数。
教材以计算长方形面积的公式为介入,引出需要学习的小数乘小数的计算题,先估算再计算。重点对笔算进行探索。这样做虽然符合从生活中发现数学、让学生知道了数学源于生活,但是这个情境本身对于小数乘小数的算理推导过程,没有起到实际的作用。
学生在学小数乘小数之前,刚学过小数乘整数,计算的方法相类似,而今天学习的小数乘小数,与前小数乘整数比较,一个是看乘的小数有几位,在积点几位。一个是把小数位数相加的和在积点几位。计算方法和积的小数位数都有相通和借鉴之处。
所以,把这节课开始内容调整了一下,把面积的计算换成根据已经积推导的计算,以小数乘整数的计算作为小数乘小数计算方法的推导基础,以此知识作为新知识生长点。这样更能让学生体会到知识之间的联系,能更好帮助学生理解小数乘小数的计算方法。这样定位我觉的教师就可以完全跟着学生的学程走,是以学生的学来定教师的教。如果以书本的计算长方形的例题,也许学生就沉迷于各个房间的面积大小了。这节课的重点和难点学生就难以把握了。
《小数乘小数》的教学设计 7
一、教学内容:苏教版五年级上册第86~87页例1及相应的“试一试”“练一练”,练习十第1~3题。
二、教学目标:
1.让学生提通过主动探索,理解并掌握小数乘小数的计算方法,能正确进行相关的计算。
2.让学生在探索计算方法的过程中,进一步增强探索数学知识和规律的能力。
3.让学生进一步体会知识之间的内在联系,感受数学知识和方法的应用价值,激发学习数学的 兴趣,提高学好数学的自信心。
三、教学重点、难点:
重点:探索小数乘小数的笔算方法,能正确进行相关的计算。
难点:理解小数乘小数的计算方法。
四、教学过程
(一)回忆迁移
1.提问回忆
看图根据提供的信息,你能求出什么问题?
学生答:房间、阳台的周长和面积各多少?房间的长比阳台的长多多少?
那求房间的周长怎么列式?生答:(3.6+2.8)×2
=6.4×2
=12.8(米)
和学生一道计算出结果,结合计算过程让学生回忆小数加减、小数乘整数计算方法。
2.列式揭题
求房间的面积怎么列式?(3.6 × 2.8)阳台?(2.8×1.15)
观察2道算式,想想今天我们会研究什么内容?揭题“小数乘小数”
【评:把计算教学与解决问题紧密联系是新课标的一个特点,因此在教学中注意让学生根据呈现的数据提出想解决的问题,并自己列式解决,这样不仅引出新知,同时也提高学生发现问题、解决问题的能力,而且通过求周长的计算让学生回忆小数加减、小数乘整数计算方法便于后面学习、沟通、比较、转化。】
3.类推算式
是的,看这道3.6 × 2.8小数乘小数的算式,你还能想到与它有关的其它乘法算式吗?
生答:36×28 、3.6×28、36×2.8、0.36×0.28等。
【评:培养学生类推、联想能力为下面学习、探究,后继学习做好孕伏。】
(二)探索归纳
同学们算小数乘整数时是先转化成整数乘法去算的,看来整数乘法比较重要,是基础。下面我们一道来笔算36×28=
1.回忆积的变化规律
根据36×28=1008这个算式,谁来说说36×2.8的积是多少?为什么?3.6 ×28呢?为什么积都是100.8呢?
2.猜积估算
那3.6 ×2.8的积是多少?(10.08)看来大家是胸有成竹了, 其实换个角度思考更容易发现问题的本质,想想积可能是10.08吗?1.008 吗?为什么?
( 因为3.6≈3 2.8≈2 3×2=6; 3.6≈4 2.8≈3 4×3=12;所以3.6 ×2.8的积在6与12之间。因而不可能是100.8和1.008。)
【评:培养学生的估算意识,确定积的范围,为探索笔算方法提供一种支持。】
3.自主探索
说得有道理,但数学不只是猜测,还要有严密的推理和论证,那准确得数是多少?你有什么办法知道? 生答:进行单位换算后用竖式计算或直接用竖式计算。那你们就试试看吧。
学生汇报,让学生分析说明进行单位换算后用竖式计算局限性,重点分析直接用竖式计算的做法。算时什么地方让你为难?3.6 ×2.8的积为什么是两位小数?(根据小数乘整数的经验、估算、单位换算。)还有别的方法吗?(利用积的变化规律来说明。)让学生竖式说说怎样算的?
强调:其实把2个因数都看成整数等于把两个因数分别乘10,得到的积是1008,1008就是原来的积乘了100,要求原来的积就得用1008÷100,只要从1008的右边起数出两位点上小数点。这就是用了积的变化规律和小数点移动规律去思考,确实验证了积是两位小数,前面的猜测也是对的。写单位和答句。
【评:学生自己根据已有知识、经验独立想办法利用笔算、利用单位换算等算出准确结果,培养了学生思维的开放性,通过学生的辨析让学生知道笔算具有普遍性,从而算法得以优化,很好的帮助学生理解小数乘小数的计算方法。】
4.自主尝试
根据刚才学例1的方法和经验你能算出阳台的面积吗?打开书87页完成试一试并请一位同学上黑板板演,写得快的同学可相互说说是怎样得到它的积的?
追问:得到3220后为什么除以1000呢?把2个因数都看成整数等于把两个因数分别乘10、100, 3220就是原来的积乘了1000,求原来的积就得用3220÷1000,要从3220的右边起数出三位点上小数点。
核对书上的填空后,问得数可以化简吗?化简后的结果是多少? 为了研究方便,我们不急于化简。
【评:让学生依据笔算例1得到的经验与方法迁移至试一试的探索,使经验方法通过笔算更明朗化,为下面概括、总结提供支撑。】
5.比较概括
观察例1与试一试两题中两个因数与积的小数位数,你发现什么?(两个因数一共有几位小数,积里面就有几位小数。)
通过这两题的探索,想必大家对小数乘小数的方法都有了各自的理解,你觉得小数乘小数该怎样计算?小组讨论交流,个别汇报(先按整数乘法算出积是多少,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。)其实小数乘小数可分为三步即:一算、二看、三点。一算:怎么算?二看:看什么?点:怎么点?
【评:学生通过观察、比较、抽象、概括出小数乘小数的计算方法。进一步体会到知识之间的内在联系,感受数学知识和方法的应用价值,激发学习的兴趣,提高学数学的自信心。】
(三)巩固质疑
1.在计算时第一步应该没问题关键是后两步,看错点错积就错,下面就进行针对性的练习。
⑴完成书87页练一练第1题
⑵.说说下面每题的积是几位小数,再算算看。
3.46×1.2 1.8×4.5 10.4×2.5
2. 总结:今天学了什么?有什么收获?打开书第86~87页,仔细的看,看有什么不懂等会提出来。
【评:培养学生看书质疑的能力,努力体现真实的学习、追求真实的课堂。】
(四)提高拓展
1.比一比谁的眼力强、谁的思维好。
⑴已知123×34=4182给因数点小数点使等式成立
123×34=41.82
⑵想一想1.25×3.2=4这题有没有做错?
⑶8.05×1.2=4这题正确吗?
⑷选择 2.4×1.86=( )
① 10.074 ② 4.464 ③4.98
【评:及时的练习巩固了新知,培养学生的直感】
2.完成89页的2、3两题
3.0.36×0.28积是几位小数?又该怎样计算呢?
【评:前后呼应,提出了后继学习的知识点,培养了学生探究的能力】
《小数乘小数》教案 8
一。教材分析
(1)这道例题在小数和整数相乘的基础上,教学小数乘小数,初步形成小数乘法的计算法则。计算法则是通过3.62.8(一位小数乘一位小数)和2.81.15(一位小数乘两位小数)两次计算实践概括出来的。可见,教材设计的学习方式是‘探索发现’。即先感受具体的计算,然后归纳出计算策略、步骤以及在积里点小数点的规律。
(2)小数乘小数,积的小数点的位置规律是根据‘积的变化规律’推理得到的。学生在小数乘整数时已经能够把小数乘法先当作整数乘法计算,所以例题和‘试一试’的教学重点都是‘积里的小数点在哪里’。
(3)根据积的变化规律探索小数乘法积的小数点的位置,是演绎推理为主的思维活动,比较抽象,有些难度。所以例题呈现了推理的过程,带领学生把小数乘法转化成整数乘法,体会两个乘数是怎样变化的,积跟着发生怎样的变化,如何把整数乘法的积‘回归’到小数乘法的积。‘试一试’比例题开放一�
(4)教材要求学生总结小数乘法的计算法则,用自己的语言说出计算策略、计算步骤、在积里点小数点的方法。学生总结的法则既和人类已有的计算法则一致,有不机械接受文本法则,具有儿童色彩。
(5)‘练一练’的设计是有层次的。根据两个乘数的小数位数在积里点小数点是教学重点,第1题只要在积里点小数点,突出了重点。在学生学会点小数点以后,才让他们做第2题,完整教学小数乘小数的计算。
(6)配合例1的是练习十五第1、2、3题,也是有层次的:学会正确计算——识别并改正错误——应用计算解决实际问题。第3题的估计,一方面教学小数乘小数的估算方法(把小数看成比较接近的整十数或整数,利用整数乘法的口算估计小数乘法的积大约是多少),另方面利用估算判断笔算结果的合理性。
二。学生分析
(1)已有的小数乘整数的经验会带到小数乘小数里来,看到小数乘小数,会想到看作整数乘法计算。
(2)在学习例题之前,一般不知道积里点小数点的方法,即使知道方法也不明白为什么。这是必须教学的知识!
(3)根据积的变化规律进行演绎推理是比较难的,没有外界(教材和教师)的帮助,很难独立经历推理过程,很难形成推理结论。
如果学生在教材引领下完成例题里的推理,那么继续进行‘试一试’的推理是有可能的。
(4)学生计算小数乘法会算错,错误根源一般在整数乘法上。如果‘练一练’直接进入第2题,那么学生错误主要不在新知识上,会给教学评价带来被动。
(5)学生总结小数乘法的计算法则会有话可说,但未必说得很好,需要教师的指导与帮助。
三。教学活动设计
(1)3.62.8的笔算不是学生看看教科书就能过去的,更不是让学生独立计算和交流评价就能过去的。事实上,我们的学生以及教师自己还没有达到这个水平。
列出小数乘法算式和估计得数以后:
可以让学生说出计算策略——看成整数乘法计算;看成哪一个整数乘法?——3628。教师在 3.6 的右边写出 3 6 完成整数乘法
2.8 2 8
比较小数乘法竖式和整数乘法竖式,一个乘数的变化;另一个乘数的变化→引起积的变化。这些变化要连贯起来让学生完整地说清楚。
讨论怎样从整数乘法的积回归小数乘法的积,明白‘积÷100’把小数点向右移动两位,也就是从右边起数出两位点上小数点
回顾这个小数乘法的计算,小结这题的计算策略、计算方法。具体地突出两点,一是看成整数乘法3628相乘;二是在积里点小数点的方法,由于两个乘数一共有两位小数,积里也点出两位小数。
在黑板上计算3.62.8
(2)2.81.15的教学可以放手一点,让学生联系例题里的体会,主动研究新的计算。
列出算式、写出竖式 1.15 以后:
2.8
让学生说说计算策略,应该看成怎样的整数乘法?
说说从小数乘法到整数乘法,乘数的变化、积的变化;
说说怎样从整数乘法的积回归小数乘法的积?
让学生在教科书上再次经历转化与回归的思维和计算
让学生说说两位小数乘一位小数,积里应该有几位小数。
让学生独立计算2.81.15
(3)总结小数乘法法则
回顾例题的计算:一位小数乘一位小数是怎样计算的?
回顾‘试一试’的计算:两位小数乘一位小数是怎样计算的?
比较两次计算的相同与不同:都看成整数乘法计算,都在积里点小数点,都根据乘数的小数位数点小数点。由于乘数的小数位数不同,积的小数位数不同。
归纳计算法则:
先看成整数乘法计算,再在积里点小数点;
根据两个乘数一共的小数位数,确定积的小数位数。
(4)组织练习
按教科书练习编排的线索,适当修改、调整、变化。
先练习在得数里点小数点,再完整笔算小数乘小数,然后识别并改正错误。
《小数乘小数》教案 9
一、教材分析:
本节课主要教学小数乘小数的计算。例1呈现的是“小明”房间连同阳台的平面图。教材在引导学生列出乘法算式后,要求先估计,再计算。在让学生初步估计乘积以后,教材重点组织学生探索笔算方法。启发学生理解:把两个因数看成整数,等于把原来的两个因数分别乘10,得到的积也就等于原来的积乘10再乘10,既乘100。由此,要得到原来的乘积,应该用整数相乘的积反过来除以100。随后的“试一试”让学生继续利用例题的情境,求平面图中的阳台面积。教材通过直观的图示呈现了计算的思考过程,但把其中的关键步骤留给学生填空,并在填空的基础上完成计算,进一步加深对计算方法的理解。然后,引导学生比较“例题”和“试一试”的计算过程,发现两个因数中的小数位数与积的小数位数的关系,初步抽象出小数乘小数的计算方法。最后,通过练习,帮助学生形成相应的计算技能,并让学生应用学过的计算知识解决简单实际问题,使学生体会到小数乘法的实际应用价值。
二、学情分析:
本节课教学小数乘小数的计算方法,其生长点是整数乘法。教学小数乘小数3.62.8时,学生已经学习了小数乘整数,积累了以下两点认识:可以像整数乘法那样乘;因数里有几位小数,积也有几位小数。这些认识是学生学习小数乘小数的基础。
三、教学目标:
1.使学生通过自主探究,理解并掌握小数乘小数的计算方法,并能正确进行计算。
2. 使学生在探索计算方法的过程中,培养初步的推理能力以及抽象、概括能力。。
3. 使学生进一步体会数学知识之间的内在联系,感受数学探索活动本身的乐趣,增强学好数学的信心。。
四、教学重点:让学生通过主动探索,理解并掌握小数乘小数的计算方法。
教学难点:理解小数乘小数的计算方法。
五、教学过程:
(一)、情境导入
1、 谈话:今天,小明搬了新家,你们想去参观吗?
出示小明房间的平面图。(课件出示)
提问:这是小明房间和阳台的平面图,根据图中的数据,你能提出哪些数学问题?
学生自由发言。
2、谈话:同学们提出了很多有价值的问题,下面我们先解决其中一个最基本的问题——房间的面积有多大?
引导学生列出算式:3.62.8。
揭示课题:这节课我们一起来探讨小数乘小数的计算方法。(板书课题)
(二)、引导探究
1、谈话:我们先来估计一下,“3.62.8”的积大约是多少?
方法一:33=9(平方米)
方法二:43=12(平方米)
方法三:32=6(平方米)
2、谈话:通过刚才的估计,我们知道的积应该在6到12之间,或者说是在9左右。
那么准确的得数究竟是多少?你能尝试用竖式来算一算吗?
3、学生独立尝试计算。
学生小组讨论。
学生汇报交流。
小结:两个因数都乘10后,得到的积就等于原来的积乘100,要求原来的积,就要反过来把1008除以100。
提问:这里的计算结果与我们开始的估计是否一致?
(三)、教学试一试,进一步理解计算方法
1.刚才我们计算出了小明房间的面积,小明还有一个漂亮的小阳台,它的面积又是多少平方米呢?老师相信你们肯定能算出来。打开书完成填空。写好的同学小组里交流,你是怎样做的。
(1)学生汇报。
(2)小结:老师明白了,他是把两个因数都看成整数,等于把一个因数乘100,另一个因数乘10,所以得到的积就等于原来的积乘1000。要得到原来的积,就要用3220除以1000。
提问:这道题的得数是否可以化简?化简后的结果是多少?
(四)、概括计算方法
1、引导比较例题和“试一试”的计算过程。
谈话:老师有困惑了,小数乘小数,积的小数位数是怎样确定的呢?想不想帮老师解决这个难题?下面我们一起来讨论。
出示讨论题。
比较“例题”和“试一试”,观察积的小数位数与因数的小数位数有什么关系?
2、小组讨论,汇报交流。
3、提问:我们能不能总结一下,这类小数乘小数的题应该怎样计算?
(五)、巩固练习。
1.你能给下面各题的积点上小数点吗?打开书,完成练一练第1题。
①指名口答 。
②小数点为什么点在这里?
2.做练一练第2题。
让学生独立计算。
3.过渡:看来同学们已经掌握小数乘小数的方法了,下面请大家来当一回小老师,批改一下这位同学的作业。先看对不对?错在哪里呢?
4.刚才老师和同学们一起学习了小数乘小数,大家都能熟练地进行口算与判断,其实生活中有很多情况下也要运用小数乘小数的方法。下面请同学们运用所学的知识解决实际问题。
一种西服面料,每米的售价58.5米,买这样的面料5.2米,应付多少元?(先估计得数,再计算)
①指名读题目。
②首先请同学们估一估,大约要付多少元?你是怎样估的?
③结果是不是300元左右呢?在练习本上列式解答。
④集体订正
5.根据1548=720,请你说出各题的积。
让学生举手抢答。
(六)、全课小结
通过今天这节课的学习,你有什么收获?
六、教学媒体设计与意图:
本节课的设计注重了计算教学和解决问题的紧密联系。在探索计算方法的过程中,恰当地运用了教学媒体,加强了数学与现实生活的联系,利用教学媒体也便于让学生比较出整数乘法和小数乘法的联系与区别,让学生根据知识间的内在联系,主动探索出了小数乘小数的计算方法。也使学生在参与数学学习活动的过程中,养成了独立思考、主动与人合作的习惯,从而获得了成功的体验,产生了对数学的积极情感。整节课主要让学生通过自主探究,理解并掌握了小数乘小数的方法,能正确计算相应的式题,并且在探索计算方法的过程中,培养了学生初步的推理能力及抽象、概括能力。
七、教学反思:
在本节课的教学中,我首先从估算引入,让学生体会到解决问题的不同方式,更为接下来探索笔算方法提供一种支持——学生可以通过对笔算结果与估算结果的比较,判断笔算结果是否合理,从而确认相应计算方法的正确性。紧接着我让学生根据以往小数乘整数的经验,自主探索小数乘小数的计算方法。探索之后是发现与提升。通过比较因数与积的小数位数的关系,让学生在理解算理的基础上自然发现积里点小数点的操作方法。随后让学生自主总结概括出了小数乘小数的计算方法。进一步体会到了知识与知识之间的内在联系,感受到了数学知识和方法的应用价值,激发了学生学习数学的兴趣。最后,通过给积加小数点,计算,改错等练习形式巩固算法,帮助学生形成了相应的计算技能。并注重了学生思考过程的交流,有利于进一步深化对小数乘小数计算方法的理解,提高了学生的计算能力。
小数乘小数教学设计 10
教学目的:
掌握小数乘法的计算法则,使学生掌握在确定积的小数位时,位数不够的,要在前面用0补足。
能正确地计算小数乘法,提高计算能力和正确率。
培养和发展学生的观察、概括能力,以及运用所学知识解决新问题的能力。
教学重点:
掌握小数乘法的计算方法。
教学难点:
小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足。
教学过程:
一、复习导入
(一)口算
师:同学们准备好上课了吗?那现在我们放好笔和书,端正坐好,上课。看一看哪位同学的口算非常快。
0.9×6 7×0.08 1.87×0 0.24×2
1.6×5 4×0.25 60×0.5 7.8×1
二、探索新知
1、出示例3图:同学们最近我们校园宣传栏的玻璃碎了,你能帮忙算算需要多大的一块玻璃吗?怎么列式?(板书:0.8 ×1.2)
(1)引导学生审题后指名列式:0.8 ×1.2
(2)请学生估一估0.8 ×1.2的积。 (约等于1)
(3)提出问题:0.8 ×1.2的积到底是多少呢?两个因数都是小数怎么计算呢?学生自主探索计算方法。
2、尝试计算
师:观察算式和前面所学的算式有什么不同? 这就是我们要学的“小数乘小数”,两个因数都是小数,怎样计算呢?和同桌讨论一下,然后自己尝试练习。(指名学生上台板演)
方法一: 1.2米=12分米 0.8米=8分米
12×8=96(平方分米) 96平方分米=0.96平方米
方法二: 1. 2 扩大到它的10倍 1 2
× 0. 8 扩大到它的10 倍 × 8
0.9 6 缩小到它的1/100 9 6
3、1.2×0.8刚才是怎样进行计算的?
引导学生得出:先把被乘数1.2扩大10倍变成12,积就扩大10倍;再把乘数0.8扩大10倍变成8,积就又扩大10倍,这时的积就扩大了10×10=100倍。要求原来的积,就把乘出来的积96再缩小100倍。
4、观察一下,因数与积的小数位数有什么关系?(因数的位数和等于积的小数位数。)
想一想: 6.05×0.82的积中有几位小数?6.052×0.82呢?
5、小结小数乘法的计算方法。(教学例4)
师:请做下面一组练习
(1)练习(先口答下列各式积的小数位数,再计算)p4做一做
(2) 引导学生观察思考。
①你是怎样算的?(先整数乘法法则算出积,再给积点上小数点。)
②怎样点小数点?(因数中一共有几位小数,就从积的最右边起,数出几位,点上小数点。)
③ 计算0.56×0.04时,你们发现了什么?那当乘得的积的小数位数不够时,怎样点小数点? (要在前面用0补足,再点小数点。)
师:通过以上的学习,谁能用自己的话说说小数乘法的计算法则是怎样的?
(3) 根据学生的回答,逐步抽象概括出p5页上的计算法则,并让学生打开课本齐读教材上的法则。(画线并做记号)
(4)练习:
①判断,把不对的改正过来。
0.0 2 4 0.0 1 3
× 0.1 4 × 0.0 2 6
9 6 7 8
2 4 2 6
0.3 3 6 0.000 3 3 8
②根据1056×27=28512,写出下面各题的积。
105.6×2.7= 10.56×0.27=
0.1056×27= 1.056×0.27=
三、应用
1、在下面各式的积中点上小数点。
0 . 5 8 6 . 2 5 2 . 0 4
× 4. 2 × 0 . 1 8 × 2 8
1 1 6 5 0 0 0 1 6 3 2
2 3 2 6 2 5 4 0 8
2 4 3 6 1 1 2 5 0 5 7 1 2
2、p5做一做
3、p8页5题:先让学生说求各种商品的价钱需要知道什么?再让学生口答每种商品的重量,然后分组独立列式计算。
四、总结:回忆这节课学习了什么知识?你是怎么样的感受呢?
五、作业:《课堂作业本》第2页
六、板书设计
小数乘小数
0.8 ×1.2
1. 2 扩大到它的10倍 1 2
× 0. 8 扩大到它的10 倍 × 8
0.9 6 缩小到它的1/100 9 6
《小数乘小数》的教学设计 11
教学内容:
苏教版《义务教育课程标准实验教科书数学》五年级上册第86~87页。
教学目标:
1、让学生借助已有经验探索小数乘小数的计算方法,并在师生互动中理解算理,能正确地用竖式计算小数乘小数。
2、让学生经历探索计算方法的过程,培养其初步的推理能力和抽象概括能力。
3、使学生体会数学知识之间的内在联系,感受转化思想的魅力,增强学好数学的兴趣。
教学重点:
理解并掌握小数乘小数的计算方法。
教学难点:
确定积的小数位数。
教学过程:
一、基本练习
口算下面各题。
5×0.520×0.41.1×4
0.39×1001.8×10×10237÷100
[评析:口算练习应贯穿计算教学的始终,加强口算练习,能有效提高学生的笔算能力。这里的基本练习,还为学生学习新知找出了理论依据和最近发展区。]
二、探究新知
1、引入。
课件出示情境图。(小明房间、阳台平面图)
师:小明家最近换了新房子。同学们请看,这是小明房间和阳台的平面图。根据图中的数据你能提出哪些数学问题?(房间的面积有多大?阳台的面积有多大?房间和阳台一共多少平方米?……)
师:同学们提出了很多有价值的问题。如果要求房间的面积有多大,该怎样列式呢?(板书:3.6×2.8)这道算式和我们以前学习的小数乘法有什么不同?(两个因数都是小数)
师:今天这节课我们一起来探讨小数乘小数的计算方法。
板书课题:小数乘小数
2、估算。
师:同学们不妨先估计一下小明房间的面积有多大。
学生的估计可能有下面几种情况:①3×3=9。把3.6和2.8分别看成与它们比较接近的整数,把3.6看小,把2.8看大,所以面积在9平方米左右;②4×3=12。把3.6和2.8分别看成与它们最接近的整数,把两个数都看大了,所以面积比12平方米小;③3.6×3=10、8。面积和10、8平方米接近。
通过交流,让学生明确房间的面积一定比12平方米小,并且在9平方米左右。
3、试算。
师:3.6×2.8的积究竟是多少?你能试着用竖式计算吗?
教师巡视,了解试做情况,并给试算有困难的同学以引导、提示:把两个小数都看成整数计算。
教师选取不同的结果板书在黑板上。学生可能出现以下两种情况:
师:根据估计的结果,大家一致认为10、08是合理的答案,同学们真善于动脑筋思考。看来问题的关键是积的小数位数。
4、明理。
师:谁愿意说一说3.6×2.8的积为什么是两位小数?
学生可能出现两种解释:①把3.6米和2.8米分别写成分米作单位,算出面积1008平方分米,再还原成平方米作单位,所以积是两位小数;②运用积的变化规律和小数点位置移动的规律,把3.6看成36是把3.6乘10,2.8看成28是把2.8乘10,两个因数分别乘10,算出的积1008就等于原来的积乘100,要得到原来的积,就要用1008除以100,所以积是10、08。
《小数乘小数》教案 12
设计说明
1.创设一定的生活情境,引出可探索的“数学问题”。
“生活即教育”,数学知识只有来源于生活实际,学生的学习才有可能是积极的、主动的。本节教学设计从给学校的长方形宣传栏刷油漆引入小数乘小数的计算,让学生运用转化思想初步经历小数乘小数的计算方法的探究过程,并让学生在此过程中感受到生活中的许多问题都可以用小数乘法来解决,加深数学与生活的联系。
2.尝试计算、自主探索,主动获得小数乘小数的算理。
《数学课程标准》中指出:“教师教学应该以学生的认知发展水平和已有的经验为基础”。本节教学设计联系原有的学习经验,首先给予学生充分的空间和时间,让学生独立尝试小数乘小数的计算,重点放在对小数乘小数的算理的理解上,不仅要让学生学会怎么计算,更要让学生理解为什么要这么计算。
3.运用计算法则,联系实际解决问题。
数学来源于生活,必然又回归于生活并高于生活。在学生初步掌握小数乘小数的计算法则与算理的基础上,应用生活化的练习让学生的知识得到系统的整理与巩固,并不断拓展、提高学生的思维能力。在学生掌握了小数乘小数的计算方法后,通过不同层次的习题进行巩固。
课前准备
教师准备 PPT课件课堂活动卡 学情检测卡
教学过程
⊙创设情境,引入新课
(播放课件)我们的校园多美呀!有高大的教学楼、宽阔的'操场。(课件出示正在刷油漆的宣传栏)看!工人叔叔正在给宣传栏刷油漆,可是有个问题却难住了他们。你们能帮助他们解决吗?(课件出示教材5页例3)
设计意图:创设生活情境,从给学校的宣传栏刷油漆的场面引入小数乘小数的计算,既调动了学生的学习兴趣,又渗透了数学来源于生活,且应用于生活的思想。
⊙探究新知
1.教学例3,初步掌握小数乘小数的计算方法。
(1)理解题意。
师:要想知道一共需要多少千克油漆,必须知道什么条件?(宣传栏的面积)
师:那么,宣传栏的面积怎么计算呢?
预设 生:因为宣传栏是一个长方形,所以我们只要根据长方形面积的计算公式就可以计算出来。
(2)尝试列式。
师:怎么列式呢?(2.4×0.8)
(3)揭示课题。
(教师指着算式)请同学们观察这个算式,它有什么特点?(因数都是小数)
揭题:这就是我们这节课要学习的小数乘小数。(板书课题)
(4)合作探究。
师:两个因数都是小数,应该怎么计算呢?下面请同学们在小组内讨论一下这道题的计算方法。
(学生在小组内讨论,并汇报)
预设 生1:可以利用分米和米之间的进率进行计算。
将“m”改写成“dm”。
2.4m=24dm 0.8m=8dm
用竖式计算:
将积的单位“dm2”改写成“m2”:192dm2=1.92m2。
《小数乘小数》教学设计 13
教学内容:教科书p86-87例1及相应的“试一试”,练习十五第1-3题。
教学目标:1.引导学生在自主探究、小组交流等方式上,理解并掌握小数乘小数的方法,能正确计算相应的题目。
2.在探索计算方法的过程中,培养学生初步的 推理能力以及抽象、概括能力。
3.引导学生进一步体会数学知识之间的内在练习,感受数学探索活动本身的乐趣,增强学好数学的信心。
教学重点:确定积的小数点的位置。
教学难点:理解把小数乘法转化成整数乘法后,得到的积回归小数乘法积的过程。
教学过程:
一、复习旧知,引入课题
1.用竖式计算:
0.57×23 = 2.5×44=
提问:说说你是怎么算的?
2.根据13 × 12 = 156 ,直接写出下面各题的积。
1.3 × 12 =
13 × 1.2=
1.3 × 1.2 =
(要求学生回答问题要完整。例如:因为13 × 12 = 156,而1.3× 1.2中13缩小了十倍,所以积就要缩小十倍是15.6)
提问:我们以前学习了小数乘整数,那么 1.3 × 1.2是小数乘小数,它的结果你们说的对吗?学完这节课你就知道了(导入课题)
二、引导探究,掌握方法。
1.课件出示例题。提问:
① 从图中,你能获取那些数学信息?
② 根据这些信息,你能提出哪些数学问题?
③ 下面我们就来解决小明房间的面积有多大?
你会列式计算小明房间的面积吗?
(出示3.6×2.8=)
2、3.6×2.8=?和我们以前学过的小数乘法有什么不同?你能估算一下它的面积大约是多少吗?(指导学生估算3.6×2.8的积)
3、探索笔算方法
①通过刚才的估计,我们知道3.6×2.8的积应该在6~12之间,或者说是在9左右。那么准确的得数究竟是多少呢?我们可以用竖式计算。 (谁能在黑板上写出3.6×2.8的竖式)。
②怎么用竖式计算呢?小组里的同学讨论讨论,如果讨论好了,可以试着写在随堂本上
③教师巡视,指名一学生上黑板计算,师生互动,完成后说说你是怎么想的,引导学生思考小数乘小数按照整数乘整数的计算想起。(在计算3.6×2.8时想起36×28的笔算,师板书: 36
×28
④做错的同学订正一下。
⑤引导学生想一想小数乘小数怎么算?
三、自主探索,形成认识
教学“试一试”
1.我们现在来解决小明阳台面积的问题,请同学们列式计算(独立完成)。
2.观察黑板上的四道竖式,思考:
①结合具体题目,让学生说说两个因数与积的小数位数有什么关系?
②小数乘小数与小数乘整数在计算的过程中有什么相同点与不同点?
3.总结、归纳小数乘小数的计算方法。
四、巩固练习,加强理解
1.解决1.3×1.2=1.56
让学生说说为什么?(去掉问号)
2.你能给下面各题的积点上小数点吗?(p87第一题)
提问:说说为什么这样点小数点?要注意些什么?
4.用竖式计算:
4.6×1.2= 1.8×4.5= 10.4×2.5=
3.下面的计算对吗?把不对的改正过来(p89 第2题)
五、全课小结
这节课你有什么收获?有什么需要提醒其他同学的?
六、作业:p89第1.3题
教学目标 14
1、掌握小数乘法的计算法则,使学生掌握在确定积的小数位时,位数不够的,要在前面用0补足。
2、比较正确地计算小数乘法,提高计算能力。
3、培养学生的迁移类推能力和概括能力,以及运用所学知识解决新问题的能力。
教学重难点
教学重点
小数乘法的计算法则。
小数乘小数数学教案 15
一 、教学目标
1. 初步理解倍数可以是整数,也可以是小数,能用所学知识解决简单的实际问题。
2. 初步学会通过验算检查小数乘法计算的准确性。
3.进一步养成良好的估算意识,提高学生的估算能力。
二、教学重点、难点
1. 教学重点:初步理解倍数可以是整数,也可以是小数,能用所学知识解决简单的实际问题。
2. 教学难点:初步学会根据具体情况,选择验算方法的意识与能力,发展思维的灵活性。
三、预计教学时间:
1 节
四、教学活动
(一 )基础训练
【口算】
9.66=
8.47=
300.3=
1.54=
0.180.3=
12-0.9=
369=
84+7.8=
8.5100=
0.0425=
【解答题】(只列式不计算)人步行每小时4千米,自行车的速度是步行的3倍,摩托车的速度是自行车的4倍。摩托车每小时行多少米?
(二) 新知学习
【典型例题】
1.主题图引入。
(1)观察主题图,根据条件提出问题:鸵鸟的最高速度是多少千米/时?
(2)学生在练习本上独立解决问题。
(3)根据学生提出的问题,适当板书。
【小结】在倍比关系中,倍数也可以是小数。
2.学习小数乘法的验算方法。
(1)独立尝试验算。
(2)汇报交流,典型方法板书。
【小结】在小数乘法中,我们同样可以利用乘法交换律来验算。
(三) 巩固练习
【基础练习】
1.课本第6页做一做。
2.课本第8页第7题。
3. 课本第8页第8题。
4.课本第8页第9题。
【提高练习】
5. 课本第9页第10题。
6. 课本第9页第11题。
7. 课本第9页第12题。
8. 课本第9页第13题。
【拓展练习】
9. 课本第9页第14题。
(四)全课总结
在乘法中,一个数(0除外)乘比1大的数,积比原来的数大;一个数(0除外)乘比1小的数,积比原来的数小。
(五)教学效果评价(小测题)
1.不计算,判断下面各算式中积与第一个因数的大小关系。
9.80.7( )
4.90.18( )
900.05( )
0.320.85( )
2.一个皮球的价钱是2元,一个小足球的价钱是皮球的9.6倍。一个小足球的价钱是多少元?
《小数乘小数》的教学设计 16
今天我说课的课题是《小数乘小数》。是苏教版小学五年级上册第九单元第一课时的教学内容。这部分内容主要是教学小数乘小数的计算,教材一共安排了两道例题和4道练习题。
一、分析教材
(一)教材所处的地位
小数乘以小数是在学生学习了小数乘以整数、整数乘以小数及整数乘法的基础上进行教学的。它既是小数除法学习的基础,也是小数四则混合运算和分数小数四则混合运算学习的基础。
(二)学情分析。
由于前面的学习,学生已有很多丰富的感性经验,还有一些学习能力强的学生已懂得了计算的方法,但是对于算理的理解还是不到深刻。
(三)教学的要求及重、难点的确定
教学目标:
1、从学生原有的知识经验出发,通过主动探索和教师引导,使学生理解小数乘以小数的算理,掌握算法,并能正确进行笔算。
2、在探索过程中,通过观察、比较、归纳与概括的过程中,学会用数学语言进行表述交流,渗透转化思想。
3、使学生体验学习过程是研究的过程,感受探索成功的愉悦,分享与同伴学习的乐趣。
教学重点:探索并掌握“小数乘以小数”的计算方法。
教学难点:两个因数都扩大10倍,积就扩大100倍的理解。
二、说教法、学法
(一)学法
尝试-----探索交流-----总结方法-----运用解决问题
学生的学习就是紧紧依托已有知识和经验,顺应探索过程中学生的思维取向,引导学生进行主动探索、积极思考和讨论交流,在不断地“尝试、探索交流、解释心中一个又一个的迷团,总结出方法、最后会运用方法解决问题”这一循环过程中,发现“积中小数位数与因数小数位数”的关系,得出计算的方法。
二、教法
引导交流,深化提炼。
学生是学习的主体,只有学生的主动、积极参与的课堂才是具有灵性的课堂,真实的课堂。《积极学习101个策略》中提到,教会别人是最好的学习策略。再一个学生的思维与成人之间有很大的区别,因此学生的方法才最好。所以把课堂让给学生,让学生在交流中获得新知,使得课堂充满活力。
四、说教学程序
1、创设情境,引出可探索的“数学问题”。
数学来源于生活,数学更服务于生活。通过对学生熟悉的住房面积计算,既复习了旧知,又自然的引出了本课要探索的新知,同时,赋予了计算一定的生活意义与实际意义,使学生感悟到数学与生活的密切联系,激发产生计算的迫切需要,在急于要弄明白的求知心理驱动下,激起了探索的欲望,为下一步的自主探究创造了良好的心理条件。
2、对算理和算法的自主探索。
放手让学生尝试运用已有知识自己去探索,凭学生自己的理解来寻找解决新问题的方法。通过相互的交流,相互的质疑,不断产生认知冲突,思维碰撞出火花,营造出继续探索规律,解释新问题的氛围。
(1)独立尝试。独立计算,学生会根据对前面小数乘以整数,整数乘以小数的算法和算理的理解来进行计算,这一尝试可充分暴露学生的思维过程,有助于教师充分了解学生计算小数乘以小数时在认知上的难�
(2)交流算法碰撞思维。在交流中,不同层次的学生畅谈自己的算法与想法,老师可以及时掌握学生不同的思维生长点和认知区别。尊重学生,让尽可能多的学生创造性地参与到计算的探索过程中来,对学生算法、算理和结果上的对与错不作判断,而是把各种不同的算法与想法展示给全班学生,让其产生认识上的冲突和思维的碰撞,这样从错误到理解,加深学生对算理的理解。
3、运用规律,领悟算理,获得方法。
两个因数的小数位数与积中的小数位数这一规律在学生的头脑中还不是丰富的,也不够充分,如果这个时候就引导学生总结出小数乘小数的计算方法,那样学生得来的方法就显得生硬。因此运用规律尝试计算,一方面可加深对算理的理解,更是丰富对算法的感性认识,为归纳出小数乘以小数的法则打好基础,另一方面可提高学生的学习兴趣,让学生体验探索带来的乐趣。所以丰富学生的感性经验,加深学生对规律的探索,这样所得来的计算方法才是水到渠成,才是平静中的顺其自然。
4、运用法则,发展技能,促进发展。
为了体现法则的运用,顾及不同层次的学生,拓宽学生的思维,培养学生的发散思维,一共设计了三道题。
⑴做87页练一练中的第2小题。演练操作。小数乘法的计算法则,具有较强的操作性,是对小数乘法算理在操作层面上最简单的概括,对学生在计算时有很强的指导作用,是思维的简约化,是解题策略的优化。通过此题可提高学生操作的熟练性,让学生完整地进行一次计算的演练,使学生学会用方法来指导计算,帮助学生对计算方法的记忆,也体现出方法的指导性与检验作用。
⑵做练习十五的第2小题。找错纠错。学生计算出错是常有的现象,而学生计算的错误往往是由于对算法掌握的不完整,顾此而失彼或一些错误的习惯造成,因此加强学生对常见错误计算的认识,即可预防计算中出现这样的错误,同时也是对算法的加固。
⑶课本89页练一练的第2题。转换思维,拓宽视角。让学生根据积来改因数的小数点位置。培养学生的分散思维一直以来都要是数学老师所追求的,这样换一个角度去思考,从不同的视角去观察,有利于拓宽学生的思维,培养学生的分散思维,同时又是对算法的巩固与提升。
5、回归生活,解决问题。
做课本练习十五的第3小题。让学生在具体的情景中,运用的所学到的小数乘法知识解决生活中的数学问题,使学生真实在感受到数学学习的价值,符合了数学来源于生活,服务于生活的教育理念。
《小数乘小数》教学设计 17
教学内容:
P66页例8,“练一练”,练习十二第1、3、4、5题。
教学目标:
使学生初步掌握小数乘小数的意义和计算法则,使学生掌握确定积的小数位数时,位数不够时用“0”补足;培养学生的合作意识和推理能力。
教学重点:
掌握确定积的小数位数时,位数不够时用“0”补足
教学难点:
确定积里小数点的位置
教学准备:
课件、展台
教学过程:
一、复习:出示练习十二第4题
根据第一栏的积,写出其他各栏的积(说说是怎样想的。?)
二、教学例8。
出示例8。
(1)花架的占地面积是多少平方米?怎样列式?
指名回答,师板书算式。
(2)学生试做。
0.28
小数乘小数教学设计 18
[教学目标]
1、使学生通过自主探索,理解并掌握小数乘小数的计算方法,能正确计算相应的式题。
2、引导学生积极主动地参加教学活动,经历探索计算方法的过程,培养他们初步的推理能力以及抽象概括能力,并能用数学语言表达自己的想法并进行交流。
3、使学生进一步体会数学知识之间的内在联系,感受数学探究活动本身的乐趣,增强学好数学的信心。
[教学重点]
确定积的小数点的位置。
[教学难点]
理解把小数乘法转化成整数乘法后,得到的积回归小数乘法积的推理过程。
[教材简析]
本课学习小数乘小数的计算方法,其教学的生长点是整数乘法。然而,“按整数乘法相乘后怎样得到原来的积”,则需要经历一个严密的推理过程,教材安排两次探究活动:第一次在例1,思考虚线框里三个箭头以及上面的“×10”“÷100”的意思,扶着学生经历推理过程;第二次在“试一试”,让学生在三个箭头上面的括号里填数,并写出左边竖式的积,独立进行推理。在两次探究以后,比较各题中两个因数与积的小数位数,发现“两个因数一共有几位小数,积就有几位小数”这一规律,在理解算理的基础上得出在积里点小数点的操作方法。同时通过归纳推理的方式总结出小数乘法的计算法则。
[教学过程]
一、在“情境”中引发问题
1、复习旧知:小明搬了新家,这是他家的建筑平面图。你能计算每个房间的占地面积吗?说说你是怎样算的?
书房的面积:3×3=9平方米
厨房的面积:2.7×2=5.4平方米,先按照整数乘法进行计算,因为2.7中有一位小数,所以积中也有一位小数。
客厅的面积:3.21×5=16.05平方米先按照整数乘法进行计算,因为3.21中有两位小数,所以积中也有两位小数。
2、提出问题:有没有同学能计算卧室的面积?
列出算式:3.6×2.8(学生苦于无法计算,面露难色)
指导观察:“3.6×2.8”和刚才的乘法算式有什么不同?
揭示课题:这节课我们一起来探讨“小数乘小数”的计算方法。
二、在推理中实现转化
(一)尝试计算,引导推理
1、估一估,确定积的范围
先估计一下,“3.6×2.8”的积大约是多少?
估算方法一:4×3=12平方米,把3.6和2.8分别看成最为接近的整数,把两个数都看大了,准确得数比估计的数小,所以积小于12平方米。
方法二:3×3=9平方米,把3.6和2.8分别看成比较接近的整数,把3.6看小,2.8看大,所以积在9平方米左右。
确定范围:通过刚才的估计,我们知道“3.6×2.8”的积应该小于12平方米或是9平方米左右,那么准确得数究竟是多少呢?我们可以用竖式来计算。
2、点拨转化方向
根据我们以往计算小数乘整数的经验,猜测一下:用竖式计算小数乘小数可以怎样计算?(把两个小数都看成整数,先按整数乘法进行计算,点上小数点。)
3、尝试计算,突现矛盾
学生独立尝试计算,小组相互交流。而后,选择不同的方法板书在黑板上。可能有以下两种方法:
3.63.6
×2.8×2.8
288288
7272
100.810.08
(a)(b)
方法a:把3.6×2.8看成36×28来计算,结果是1008。因为两个因数都是一位小数,所以积也是一位小数,结果是100.8。
方法b:我也是把3.6×2.8看成36×28来计算,结果是1008。因为两个因数都是一位小数,所以积中肯定也有两位小数,积是10.08。
突现矛盾:两种算法似乎都有各自的道理。那么,根据你的理解,哪种算法可能是正确的?(学生可以从刚才估计的结果来判断)大家一致认为10.08是合理的答案,看来关键问题是积的小数位数。计算3.6×2.8的积为什么要点出两位小数?我们继续研究。
4、激活旧知,引导推理
尝试解释:计算3.6×2.8的积为什么要点出两位小数?你能想办法说明吗?
可能出现两种解释方法。方法一:把3.6米和2.8米分别改写成分米作单位,算出面积是1008平方分米,再还原成平方米作单位。所以积是两位小数。方法二:运用“积的变化规律”和“小数点移动规律”,计算时把3.6和2.8分别看作36和28,把两个因数都乘了10,算出的积1008就等于原来的积乘100。为了让积不变,就要把1008除以100。
引导推理:随着学生的回答,出示分析推理图,你能看懂虚线框里的意思吗?谁愿意说说自己的理解?
3.6
×2.8
288
72
1008
看着分析图,引导学生完整叙述整个推理过程。
第一个箭头“×10”是把3.6看成36是乘10;第二个箭头“×10”是把2.8看成28是乘10;把两个因数都乘10,得到的积就等于原来的积乘100;最后一个箭头“÷100”表示要得到原来的积就要把得到的整数积除以100。
现在你们知道算法a错在哪里了吗?(两个因数都乘10,积也就乘了100,算法a只把得到的积除以了10。)
小结:两个因数都乘10后,得到的数就等于原来的积乘100,要求原来的积,就要反过来把1008除以100,从右边起数出两位点上小数点。所以3.6×2.8的积是两位小数。
通过推理,我们证明了3.6×2.8=10.08,和估计的结果是一致的,积确实小于12平方米或是9平方米左右。
(二)独立推理,实现转化
1、提出问题:刚才我们求出了小明房间的面积,阳台的。面积是多少平方米呢?
根据例题学习的方法,先想一想可以怎样计算2.8×1.15,再根据自己的思考过程,结合分析图完成。
1.15
×2.8
920
230
2、交流推理过程:你是怎样得到1.15乘2.8的积的?追问:得到3220后为什么除以1000呢?
引导学生表达(结合分析图):把两个因数都看成整数,等于把一个因数乘100,另一个因数乘10,所以得到的积就等于原来的积乘1000。要求原来的积,就要用3220除以1000,从3220的右边起数出三位,点上小数点。
3.220可以化简吗?根据是什么?
(三)专项对比,概括方法
1、专项对比:两次探究之后,我们来比较各题中两个因数与积的小数位数,你发现它们之间有什么联系?(小数与小数相乘时,如果因数里一共有几位小数,那么积里面就有几位小数。)
2、你能给下面各题的积点上小数点吗?
8.772.916.5
×0.9×0.04×0.6
7832916990
3、概括方法:通过探索,大家对小数乘小数的方法都有了各自的理解。那么,你觉得小数乘小数应该怎样计算?小组里互相说一说。
在全班交流的基础上引导学生完整表达:先按整数乘法算出积,看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。跟我们刚才的猜测是吻合的,关键是确定积的小数点的位置。
三、在“应用”中发展思维
1、基本练习
(1)根据148×23=3404,很快地写出下面各题的积
14.8×23=148×2.3=14.8×2.3=1.48×2.3=0.148×23=
(2)完成练习十四第1题。学生独立计算,然后同桌互相检查计算过程。
2、解决问题
(1)星期天,小明的妈妈去超市买东西。
商品名称
色拉油
饼干
大米
单价
38.7元/瓶
15.6元/千克
5.8元/千克
数量
2瓶
1.5千克
18.4千克
总价
(2)这是小明的爸爸去某地出差乘出租车的一张发票,显示以下信息:单价1.6元,里程5.5千米,起步价8元/3千米。学生讨论算法,尝试计算。
3、拓展练习
在括号里填上合适的数,使算式成立。
()×()=0.48
四、在“交流”中提升经验
让学生畅谈学习的感想,并总结本课的主要知识。
《小数乘小数》教案 19
【教学内容】
苏教版第9册86页例1、87页“试一试”、“练一练”,89页1、2题。
【教学目标】
掌握小数乘小数的计算法则,能正确进行计算,培养学生的推理、概括、估算能力,进一步体会转化思想的价值和新旧知识之间的内在联系。
【教学重点】
自主探索小数乘小数的笔算方法。
【教学难点】
确定积的小数点的位置。
【教学过程】
一、复习:
0.8×3=
说这个算式的意义,回忆小数和整数相乘的方法。谈话:哪些同学有自己的小房间,是什么形状的?导入新课。
(设计意图:回忆小数和整数相乘的方法,为后面概括小数和小数相乘的法则作铺垫。谈话过渡自然。)
二、新授:
1、教学例1。
(1)出示例1:(挂图)
(2)下面是小明房间的平面图,房间长3.6米,宽2.8米。
(2)提问:从平面图上你知道了哪些信息?根据这些信息你会解决什么问题?房间的面积有多大,就是求什么图形的面积,利用什么公式来列式?
房间面积和阳台面积的算式同时列出。
列式后说说和我们以前学的小数乘法有什么不同?板书课题:小数乘小数
(设计意图:房间面积和阳台面积的算式同时列出,便于一扶一放。)
让学生先估计一下。
3.6×2.8≈ ( )
想:3×2=6(平方米)
4×3=12(平方米)
房间的面积在6-12平方米之间。
还可以怎么估算?
4×2=8(平方米) 3×3=9(平方米) 3.5×3=10.5(平方米)
哪一种估算方法比较好?
(3)猜:列竖式怎样算呢?可以先按整数乘法算吗?
把这两个小数都看成整数,很快计结果。根据刚才的估算,再猜一猜,小数点可能会点在哪儿?
3 . 6 ×10 3 6
× 2 . 8 ×10 × 2 8
2 8 8 2 8 8
7 2 7 2
1 0 0 8 ÷100 1 0 0 8
相乘后怎样才能得到原来的积?
(4)学生讨论得出:
两个因数分别乘10,积就扩大100倍,要求原来的积,1008就要缩小100倍,要除以100。原来的积是10.08。
这个结果与我们刚才猜的和估算的结果是否一致?
(设计意图:先估计得数,然后根据估计的得数猜小数点位置,再用算理验证小数点的位置是否正确,构建知识的形成过程,进一步发挥估算的作用,体现估算的价值。)
2、试一试。
2.8×1.15= ( )
计算2.8×1.15时,先把两个小数都看成整数,在积里应该怎样点上小数点?
同座的互相说说算理)
(讲评学生做的结果)(在对比中让学生体会怎样列竖式计算简便)
1 . 1 5 ×100 1 1 5
× 2.8 ×10 × 2 8
9 2 0 9 2 0
2 3 0 2 3 0
3.2 2 0 ÷1000 3 2 2 0
解释算理:
一个因数乘10,另一个因数乘100,积就扩大1000倍,要求原来的积,3220就要缩小1000倍,要除以1000。原来的积化简后是3.22。
[设计意图:说清算理,巩固新知,同时“学数学,用数学”,将整数乘法简算的方法迁移到小数乘法的简算。]
3、总结小数乘小数的计算法则。
(1)引导:把小数乘法转化成整数乘法来计算,两个因数与积的小数位数有什么联系?
(2) 在小组里说说小数乘小数应该怎样计算: 先按整数乘法算出积是多少。
看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。(把小数乘整数的方法完善成小数乘小数的方法,齐读)
(设计意图:将小数乘整数的计算法则完善成小数乘小数的计算法则,降低了学生归纳、概括的。难度,化难为易。)
4、练一练。
(1) 你能给下面各题的积点上小数点吗?(小黑板出示)让学生用两种方法说算理〉
8.7 72.9 16.5
×0.9 × 0.04 × 0.6
7 8 3 2 9 16 9 9 0
(2) 计算下面的题。(小黑板出示)(生生互动,相互检查、批阅,师讲评)
3.46×1.2 1.8×4.5 10.4×2.5 1.04×0.25
(3)89页第2题:生找错,纠错,体会积的小数点的定位。
(设计意图:练习形式多样,巩固新知。同时又为学习例2“积的小数位数不够用0补足”作铺垫。)
5、计算:1.2+0.8 1.2-0.8 1.2÷8 1.2×0.8
(设计意图:区别小数四种运算的异同点,体会新旧知识之间的内在联系。)
6、拓展:(回到例题)如果每平方米造价5000元,小明的房间和阳台造价各是多少元?(先估算,再计算)
(设计意图:小数乘整数已学过,学生有能力解决这个问题,再次让他们体会估算的价值,体会“数学来源于生活”;教师对教材进行再加工,使数学教学建立在学生丰富的生活背景之上。)
收获:再次齐读小数乘小数的计算法则。
【教学反思】
一、在情境中引发问题
本课教学从计算“房间的面积”这个生活原型入手,突出数学与实际生活的联系,唤起学生的学习兴趣。学生在计算房间面积的过程中,既复习了已有知识,激活了新知的生长点,又引出了“小数乘小数”的新的数学问题,给计算教学增添了浓郁的现实意义。
二、在推理中实现转化
在用竖式计算之前,先让学生估一估,一方面使学生体会到解决问题策略的多样性与灵活性,同时不同估算方法得到的结果也能为探索笔算方法提供正确的大致范围。
最现实的教学起点是学生认知上的困惑与矛盾处,学生根据以往小数乘整数的经验,能够凭直觉判断小数乘小数也能转化成小数乘整数乘法进行。然而按整数乘法算出积后,如何回归到小数乘法的积,恰是学生思维的困惑处。适时呈现推理图,让学生思考箭头图及提示算式的意思,扶着学生一步步完成推理过程,通过扶放结合、循序渐进的数学推理活动,让学生感受着计算思维的内在魅力,感悟着知识间的内在联系,掌握了解决新问题的有效途径——转化策略,随后归纳概括出小数乘小数的计算方法,也就水到渠成了。
三、在应用中发展思维
教学中,安排了一系列的练习,既有专项练习,更有别出心裁的对比练习,通过这一系列的有层次的练习活动,实现了学生计算教学中的基础性和发展性的和谐统一。
数学学习总是环环紧扣的,一节课结束了,不是思维的戛然而止,而应留有余味。教者在这方面也进行了设计,如对“10.4×2.5 1.04×0.25”这两题的计算,体现了因材施教的教学原则,使认知水平低的学生,通过回顾旧知识,领悟新的内容,加速知识的迁移,而学有余力的学生则可超前学习。让数学课更能体现出“数学味”儿。
小学五年级数学《小数乘小数》教案 20
设计说明
1、创设一定的生活情境,引出可探索的“数学问题”。
“生活即教育”,数学知识只有来源于生活实际,学生的学习才有可能是积极的、主动的。本节教学设计从给学校的长方形宣传栏刷油漆引入小数乘小数的计算,让学生运用转化思想初步经历小数乘小数的计算方法的探究过程,并让学生在此过程中感受到生活中的许多问题都可以用小数乘法来解决,加深数学与生活的联系。
2、尝试计算、自主探索,主动获得小数乘小数的算理。
《数学课程标准》中指出:“教师教学应该以学生的认知发展水平和已有的经验为基础”。本节教学设计联系原有的学习经验,首先给予学生充分的空间和时间,让学生独立尝试小数乘小数的计算,重点放在对小数乘小数的算理的理解上,不仅要让学生学会怎么计算,更要让学生理解为什么要这么计算。
3、运用计算法则,联系实际解决问题。
数学来源于生活,必然又回归于生活并高于生活。在学生初步掌握小数乘小数的计算法则与算理的基础上,应用生活化的练习让学生的知识得到系统的整理与巩固,并不断拓展、提高学生的思维能力。在学生掌握了小数乘小数的计算方法后,通过不同层次的习题进行巩固。
课前准备
教师准备 PPT课件 课堂活动卡 学情检测卡
教学过程
⊙创设情境,引入新课
(播放课件)我们的。校园多美呀!有高大的教学楼、宽阔的操场。(课件出示正在刷油漆的宣传栏)看!工人叔叔正在给宣传栏刷油漆,可是有个问题却难住了他们。你们能帮助他们解决吗?(课件出示教材5页例3)
设计意图:创设生活情境,从给学校的宣传栏刷油漆的场面引入小数乘小数的计算,既调动了学生的学习兴趣,又渗透了数学来源于生活,且应用于生活的思想。
⊙探究新知
1、教学例3,初步掌握小数乘小数的计算方法。
(1)理解题意。
师:要想知道一共需要多少千克油漆,必须知道什么条件?(宣传栏的面积)
师:那么,宣传栏的面积怎么计算呢?
预设 生:因为宣传栏是一个长方形,所以我们只要根据长方形面积的计算公式就可以计算出来。
(2)尝试列式。
师:怎么列式呢?(2.4x0.8)
(3)揭示课题。
(教师指着算式)请同学们观察这个算式,它有什么特点?(因数都是小数)
揭题:这就是我们这节课要学习的小数乘小数。(板书课题)
(4)合作探究。
师:两个因数都是小数,应该怎么计算呢?下面请同学们在小组内讨论一下这道题的计算方法。
(学生在小组内讨论,并汇报)
预设 生1:可以利用分米和米之间的进率进行计算。
将“m”改写成“dm”。
2、4m=24dm 0.8m=8dm
用竖式计算:
将积的单位“dm2”改写成“m2”:192dm2=1.92m2。
小数乘小数教案 21
一、情境引入
1、 出示情境图
小明搬了新家,也有了自己的小房间。这是他家部分房间的平面图。
1.153.6 2.7
阳 2
2.8 台 卧室 厨房
客 厅 3.21
3 书房
4
3 (单位 :米)
师:从图中你能获取哪些数学信息?()
根据这些信息,你能提出哪些用乘法计算的问题呢?
你能列出算式吗?
还有不同的问题吗?怎样列式?
板书: 33= 2.72= 2.83.6=
3.244= 1.152.8=
2、比较:
师:比较这三组算式,有什么不同点?(第一组算式是整数乘整数,第二组算式是小数乘整数,而第三组算式是小数乘小数)
师:你能计算哪个房间的占地面积吗?说说你是怎样算的?
生: 我能求出书房的面积:根据正方形面积公式 33=9平方米 书房的面积是9平方米。
我能求出厨房的面积:2.72=5.4平方米。我是这样算的:先按照整数乘法进行计算,272=54,因为2.7中有一位小数,就从积的右边起数出1位,点上小数点。
我能求出客厅的面积:3.214=12.84平方米。我也是 先按照整数乘法进行计算,因为3.21中有两位小数,就从积的右边起数出2位,点上小数点。
师:刚才大家很快算出了书房、厨房和客厅的面积,那么小明房间和阳台的面积有多大呢?
3、揭示课题:这就是我们今天要学习的内容《小数乘小数》
二、初窥端倪
(一)估计
1、估一估
(1)、师:我们不妨先估计一下小明房间的面积是多少平方米,并把估计的方法说给同桌听听。
(2)、学生讨论、交流:
师: 你的同桌是怎样估算的? 你的方法呢?
(3)、全班交流:
方法一:我的同桌是这样估算的(我是这样估算的 ): 把3.6和2.8分别看成跟它
方法二:我的同桌是这样估算的(我是这样估算的):把3.6和2.8分别看成跟他们最接近的较小的整数3和2,23=6,把两个数都看小了,所以面积大于6平方米。
方法三:我的同桌是这样估算的(我是这样估算的): 把3.6和2.8分别看成比较接近的整数3和3,33=9,把3.6看小,2.8看大,所以面积在9平方米左右。
方法四:我的同桌是这样估算的(我是这样估算的):把3.6看成4,把2.8看成2,24=8,把3.6看大,把2.8看小,所以面积在8平方米左右。
2、确定积的范围
师: 现在,你能说一说3.62.8的积的范围吗?
(二)猜想
1、质疑:
那3.62.8的积到底是多少?这需要我们去计算。
2、猜想:
请同学们大胆的猜想一下,3.62.8可能会怎样算?
学生猜:先按整数乘法算出积,再看因数中有几位小数,就从积的右边起数出几位,点上小数点。
(板书:猜想 并画箭头指向整数乘整数)
师: 它们的积里可能会有几位小数?
学生猜:(积里可能会有一位小数;积里可能会有两位小数 )
(三)实验
1、尝试计算
师: 请同学们动手用按你们自己猜想的方法尝试计算。
2、展示学生的计算过程。
3.6 3.6
2.82.8
2 8 82 8 8
7 2 7 2
10.0 8 1 0 0.8
(四)验证
师:这仅仅是我们用猜想的方法算出来的结果,正确与否还需要我们来验证。
你们有办法验证吗?请小组验证并交流验证方法。
《小数乘小数》教学实录1、 学生验证。
2、 全班交流。
学生可能出现的验证方法:
方法一:我是用刚才估算的结果来验证的:小明房间面积在9平方米左右,所以,10.08这个结果比较合理。
方法二:我们组是用计算器验证的。3.62.8 =10.08(平方米),没错
方法三:我们组是把3.6米和2.8米分别改写成分米作单位,算出面积是1008平方分米,再还原成平方米作单位。所以积是两位小数。
(有没有和他们组的方法一样的?如果这样做,一定要注意什么?)
方法四:我们组是运用小数点的移动引起小数大小变化的规律来验证的:把3.6看成36,小数点向右移动了一位,也就是把3.6扩大了10倍,把2.8看成28,小数点也向右移动了一位,把2.8扩大了10倍,算出3628=1008,1008比原来的积扩大了100倍,要得到原来的积就要除以100,小数点应向左移动2位,所以3.62.8 =10.08(平方米)。
(结合学生的发言,板书推理过程)
三、再探明理
1、 提出问题:
师: 刚才,我们通过猜想 ---验证的方法计算出了小明房间的面积,那是不是也能算出阳台的面积是多少平方米呢?
学生独立计算
2、 交流推理过程:
(挑选一些学生的书放在实物投影仪上)
1 1 5
2 8
9 2 0
2 3 0
3 2 2 0
1.1 5
2.8
9 2 0
2 3 0
(学生自行解释计算过程)
3.220可以化简吗?根据是什么?
3、师:你是怎样检验的?
四、归纳方法
过渡语:我们、、、班的同学非常善于利用旧知识来学习新知识,好样的。接下来,徐老师还要看看同学们是否善于发现和总结)
1、比较明晰:
(出示课件:请同学们比较这两题中两个因数与积的小数位数,你发现它们之间有什么联系?)
师:请同学们仔细阅读题目要求,找出关键词,并把它们重重地读出来。
学生汇报。
师:能运用你们的发现来画龙点睛吗?
2、画龙点睛 (你能给下面各题的积点上小数点吗?)
8.7 7 2.9 16. 5
0.9 0. 0 40. 6
7 8 3 2 9 1 6 9 9 0
3、概括方法:
师:通过探索,大家对小数乘小数的方法都有了自己的理解。那么,你觉得小数乘小数应该怎样计算?小组里互相说一说。
师:你的同伴是怎样说的?你呢?
在全班交流的基础上引导学生完整表达:先按整数乘法算出积,看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。跟我们刚才的猜测是吻合的,关键是确定积的小数点的位置。
五、运用
1、牛刀小试
根据14823=3404,很快地写出下面各题的积
14.823= 1482.3= 14.82.3= 1.482.3= 0.14823=
2、明辨是非
下面的计算对吗?把不对的改正过来。
2.5 1
3.54.5
1 2 5 8 2 0
7 5 6 5 6
8 7.5 7.3 8 0
3、 我是小判官。
(1)3.25*8=4 () 意图:估算
2、生活小主人
(1)星期天,小伙伴们要去小明家去参观他的新房间,小明去超市买一些食品来招待他的好朋友们。
商品名称
苹果
饼 干
香蕉
单价
4.5元/千克
10.4元/千克
3.46元/千克
数量
1.8千克
2.5千克
1.2千克