首页 > 教学教案 > 教学设计 > 比例解决问题教学设计【精选28篇】正文

《比例解决问题教学设计【精选28篇】》

时间:

作为一名老师,可能需要进行教学设计编写工作,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。教学设计应该怎么写才好呢?

用比例解决问题 1

教学内容:教科书p59~60例5、例6,练习九3、7题。

教学目标:

1、使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。

2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。

3、培养学生良好的解答应用题的习惯。

教学重点:用比例知识解答比较容易的归一、归总应用题。

教学难点:正确分析题中的比例关系,列出方程。

教学过程:

一、复习铺垫,引入新课。(课件出示)

1、判断下面每题中的两种量成什么比例?

(1)速度一定,路程和时间。

(2)路程一定,速度和时间。

(3)单价一定,总价和数量。

(4)每小时耕地的公顷数一定,耕地的总公顷数和时间。

(5)全校学生做操,每行站的人数和站的行数。

2、下面各题中各有哪三种量?那种量一定?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能列出等式吗?

(1)用一批纸装订练习本,每本30页,可装订200本,每本50页,可装订120本。

(2)一列火车从甲地到乙地,2小时行驶60千米,照这样的速度,8小时可行240千米。

(3)读一本书,每天读20页,6天可以读完,如果每天读5页,需要x天读完。

3、课件出示例5情境图,问:你能说出这幅图的意思吗?(指名回答)李奶奶家上个月的水费是多少钱?想请我们帮她算一算,你们能帮这个忙吗?

(1)学生自己解答,然后交流解答方法。

(2)引入新课:象这样的问题也可以用比例的知识来解决,我们今天这节课就来讨论如何运用比例的知识来解决这类问题。板书课题:用比例解决问题

二、探究新知。

1、教学例5

(1)学生再次读题,理解题意。思考和讨论下面的问题:

① 问题中有哪三种量?哪一种量一定?哪两种量是变化的?

② 它们成什么比例关系?你是根据什么判断的?

③ 根据这样的比例关系,你能列出等式吗?

(2)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

(3)根据正比例的意义列出方程:

12.88=χ10

解:设李奶奶家上个月的水费是χ元。

8χ= 12.8×10

χ=128÷8

χ= 16

答:李奶奶家上个月的水费是16元。

(4)将答案代入到比例式中进行检验。

2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,指名板演并交流订正,比较两题的异同点,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)

3、教学例6

(1)出示例6情境图,你能说出这幅图的意思吗?(指名回答)

(2)学生根据例5的解题思路思考:题中已知两种量?什么是一定的?已知的两个量成什么关系?

(3)学生独立解答。

(4)指名板演,全班交流。

三、巩固提高。

做一做:教科书p59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。

四、课堂小结。

今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?

五、课堂作业。

教科书p62练习九第3、7题。

用比例解决问题教学反思 2

在教学用比例尺解决问题的过程中,针对课本上出现的两种问题,一类是已知比例尺和图上距离求实际距离,另一类是已知比例尺和实际距离求图上距离而且在教学的过程中,方法也有不同,同学很容易混杂

第一个容易混杂的地方是,针对两种不同类型的问题,用方程解答,在解设未知数的时候,教材上出现的方法是在设未知数的时候,单位上就出现了不同,以至于同学不知道如何区分,什么时候该怎么设

第二个就是方法的选择上,还可以利用图上距离和实际距离的倍比关系,直接计算也是一种很好的解法但是如何让同学懂得这种方法的原理很重要,从同学的课堂和课后情况来观,很多同学其实并没有从根本上懂得这种解法的原理,只是在依样画葫芦罢了

根据同学的这一情况,课后我又对照例尺的内容重新整理了一遍,其实关键还是在于同学没有真正的懂得比例尺的概念例如:比例尺1:200000这是在图上距离和实际距离的单位统一的时候的比,所以在用列方程入行解答的时候,如何进行解设只要抓住一个要点:对应的图上距离和实际距离的单位是相同的才干列出方程这样就不用去顾和怎么设,只要抓住图上距离和实际距离的单位相同就可以了,怎么设都是可以解答的

对于第二个问题,倍比关系的懂得,实际还是对于比例尺的懂得不够深例如:比例尺1:200000表示的图上距离是实际距离的1/200000,实际距离是图上距离的200000倍,图上的1厘米实际是2千米,这就是线段比例尺,在有些问题中利用线段比例尺还会给计算带来方便

在同学出现问题之后,针对同学的情况,和时地给同学适当的入行归纳整理,会加强同学的懂得,协助同学更好的掌握

用比例解决问题教学反思 3

用比例解决问题是在学生学习正比例、反比例关系的基础上来解决归一、归总应用题。通过解答使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,也为中学数学、物理、化学学科应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据正、反比例的意义来列等式,也可以巩固和加深对所学的简易方程的认识。

成功之处:

1。抓住用比例解决问题的关键,体会用比例解决问题的优势。在教学中着重让学生找出题目中两种相关联的量,判断这两种量是否成比例,成什么比例。在例5中根据8吨水的水费是12。8元,可以得出每吨水的单价一定,所以水费和用水的吨数这两种量成正比例。也就是说,两家的水费和用水吨数的比值相等。因此可以写成y/x=y/x的形式。而在例6中根据每包20本和18包,可以得出总本数一定,所以包数和每包的本数成反比例。也就是说,每包的本数和包数的乘积相等,因此可以写成xy=xy的形式。

2。理清思路,归纳概括解题步骤。在教学完两个例题之后,让学生思考怎样用比例来解决问题,步骤是怎样的。通过学生的归纳总结得出:一是解设未知数x。二是找到两种相关联的量,判断它们是否成比例,成什么比例。三是列出比例式子形如:y/x=y/x(成正比例)xy=xy(成反比例)。四是解比例检验。

不足之处:

1。学生对于算术法掌握的较牢,有的学生不愿意接受用比例来解决问题,没有体会到用比例解决问题的优势,主要受定势思维的影响。

2。个别学生没有掌握住用正比例解决问题用y/x=y/x的形式,用反比例解决问题用xy=xy的形式,导致不会列式子。

再教设计:

从学生出现的问题出发,避免出现类似的错误,从根本上去解决学生的易错易混淆的问题。

用比例解决问题教学反思 4

在教学用比例尺解决问题的过程中,针对课本上出现的两种问题,一类是已知比例尺和图上距离求实际距离,另一类是已知比例尺和实际距离求图上距离而且在教学的过程中,方法也有不同,学生很容易混杂

第一个容易混杂的地方是,针对两种不同类型的问题,用方程解答,在解设未知数的时候,教材上出现的方法是在设未知数的时候,单位上就出现了不同,以至于学生不知道如何区分,什么时候该怎么设

第二个就是方法的选择上,还可以利用图上距离和实际距离的倍比关系,直接计算也是一种很好的解法但是如何让学生懂得这种方法的原理很重要,从学生的课堂和课后情况来观,很多学生其实并没有从根本上懂得这种解法的原理,只是在依样画葫芦罢了

根据学生的这一情况,课后我又对照例尺的内容重新整理了一遍,其实关键还是在于学生没有真正的懂得比例尺的概念例如:比例尺1:200000这是在图上距离和实际距离的单位统一的时候的比,所以在用列方程入行解答的时候,如何进行解设只要抓住一个要点:对应的图上距离和实际距离的单位是相同的才能列出方程这样就不用去顾及怎么设,只要抓住图上距离和实际距离的单位相同就可以了,怎么设都是可以解答的

对于第二个问题,倍比关系的懂得,实际还是对于比例尺的懂得不够深例如:比例尺1:200000表示的图上距离是实际距离的1/200000,实际距离是图上距离的200000倍,图上的1厘米实际是2千米,这就是线段比例尺,在有些问题中利用线段比例尺还会给计算带来方便

在学生出现问题之后,针对学生的情况,及时地给学生适当的入行归纳整理,会加强学生的懂得,帮助学生更好的掌握用比例解决问题这部分内容是在学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用教材首先说明应用正、反比例的知识可以解决一些实际问题例1教学应用正比例的意义来解的基础应用题为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答通过方框中的说明突出了怎样进行思考的过程,特别强调了要断定题目中两种相关联的量成什么比例关系,以及列出比例式所需的相等关系,即“总价和数量成正比例关系,所以总价和数量的比是相等的”然后再设未知数,列出等式解答,并在解答的基础上引导学生“想一想”,如果改变例1题目里的条件和问题该怎样解答成比例的量,在生活实际中应用很广,这里使学生学惯用比例的知识来解答,在原有熟悉的基础上,再让学生用其他方法解答同一题目,概括出一般规律通过解答使学生入一步熟练地断定成正比例的量,从而加深对正比例意义的懂得有利于沟通知识间的联系,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做较好的准备同时,由于解答时是根据比例意义来列等式,又可以巩固和加深对所学的简易方程的熟悉所以,在教学上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题入行断定,这是数学学习所特有的能力

课堂小结起着整理回纳、画龙点睛的作用,但不恰当的课堂小结也许适得其反我带领学生把用比例解应用题的方法整理、归纳得天衣无缝,这样的小结对学生的当前解题确有帮助,或许在提示用比例方法解应用题时是不会出错的但新课程强调的是面向学生的未来,试想想,这样的小结会给学生的将来带来什么?

由于把用比例解应用题回结为这样的四步,学生在解题时按照这样的四步也许是不会错的,但实际上用比例解应用题时,有的也不必一定要按照这样的四步,尽可能简单的列出算式,可以用多种方法列出比例式的题就出不来好效果了学生的思维训练做不到机动开放了更不用说通过练习提高学生思维的机动性品质了

通过对这节课的总结,我意识到教师的教要以学生的发展为基准,把学生的学放到主要地位上来,真正的做到以学生为主体的教学模式。

《用比例解决问题》数学教案 5

设计说明

本节课主要学习用比例知识解决实际问题。遵循“学会应用才能真正实现数学的价值”的理念,为学生创设轻松的学习氛围,让学生亲身去体会、观察、发现、探索。因此,本节课在教学设计上关注以下两个方面:

1.合理复习,有效铺垫。

温故而知新,用比例知识解决正、反比例问题的。关键是先让学生能够正确找出两种相关联的量,然后判断它们成什么比例,最后利用正、反比例的意义列出方程。所以利用比例知识解决相关问题之前,先给出一些数量关系,让学生判断成什么比例,不但很好地复习了旧知,也用正、反比例知识解决了教学难�

2.巧妙引导,拓展思维。

《数学课程标准》指出:教师是学生学习的引导者。因为在学习这部分知识之前学生已经会解决生活中的有关归一、归总的实际问题,所以教学教材例题时,先引导学生用学过的方法解决问题,再引导学生用比例知识解决问题,这样既有利于学生理解、掌握用比例知识解决问题的方法,又有利于学生创新思维能力的培养,确保数学活动的有效性。

课前准备

教师准备 PPT课件

教学过程

⊙复习铺垫,引入新课

1.复习铺垫。

课件出示:

(1)一辆汽车行驶的速度不变,行驶的时间和路程。

(2)一辆汽车从甲地开往乙地,行驶的速度和时间。

提出问题:

①每道题中各有哪三种量?

②其中哪种量是不变的?

③哪两种量是相关联的?相关联的量成什么比例?(生讨论后解答)

2.引入新课。

生产、生活中的一些实际问题也可以应用比例知识来解决。今天,我们就来学习用正、反比例知识解决问题。(板书:用比例解决问题)

⊙合作交流,探究新知

1.学习例5,用正比例知识解决问题。

(1)课件出示教材61页例5主题图。

(2)学生读题思考,并汇报题中的已知条件和所求问题。

预设

生1:已知条件是张大妈家上个月用了8 t水,水费是28元。李奶奶家用了10 t水。

生2:所求问题是李奶奶家上个月的水费是多少钱。

(3)指名完整叙述题意。

根据学生的回答,课件出示例5:张大妈家上个月用了8 t水,水费是28元,李奶奶家用了10 t水。李奶奶家上个月的水费是多少钱?

(4)讨论、交流。

师:例5的问题可以用什么方法解决?

预设

生1:可以用算术方法解决。先用28÷8求出每吨水的价钱,再求出10 t水的价钱,列式为28÷8×10。

生2:可以用比例方法解决。设李奶奶家上个月的水费是x元,用正比例知识解答。

师:为什么可以用正比例知识解答?

预设

生:因为用水的吨数和水费是两种相关联的量,且水费和用水的吨数的比值(也就是每吨水的价钱)是一定的,所以可以用正比例知识解答。

师:如何运用正比例关系列方程解答?

预设

生:解:设李奶奶家上个月的水费是x元。

8x=28×10

x=

x=35

答:李奶奶家上个月的水费是35元。

(5)拓展练习。

王大爷家上个月的水费是42元,上个月用了多少吨水?

(学生独立完成后汇报交流)

《比例的应用》教学设计 6

教学要求:

1、使学生进一步理解比例的意义和基本性质,能区分比和比例。

2、使学生能正确理解正、反比例的意义,能正确进行判断。

3、培养学生的思维能力。

教学过程:

知识整理

1、回顾本单元的学习内容,形成支识网络。

2、我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。

复习概念

什么叫比?比例?比和比例有什么区别?

什么叫解比例?怎样解比例,根据什么?

什么叫呈正比例的量和正比例关系?什么叫反比例的关系?

什么叫比例尺?关系式是什么?

基础练习

1、填空

六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是()。

小圆的半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是()。

甲乙两数的比是5:3。乙数是60,甲数是()。

2、解比例

5/x=10/340/24=5/x

3、完成26页2、3题

综合练习

1、A×1/6=B×1/5A:B=():()

2、9;3=36:12如果第三项减去12,那么第一项应减去多少?

3用5、2、15、6四个数组成两个比例():()、():()

实践与应用

1、如果A=C/B那当()一定时,()和()成正比例。当()一定时,()和()成反比例。

2、一块直角三角形钢板用1/200的比例尺画在纸上,这两条直角边的。和是5.4它们的比是5:4,这块钢板的实际面积是多少?

用比例解决问题 7

教学反思对自己的教学的成功之处还有失败之点进行反思。对老师的不断进步有帮助,下面是关于《用比例解决问题》教学反思范文,欢迎阅读!

《用比例解决问题》教学反思(一)

用比例解决问题是在学生学习正比例、反比例关系的基础上来解决归一、归总应用题。通过解答使学生进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,也为中学数学、物理、化学学科应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据正、反比例的意义来列等式,也可以巩固和加深对所学的简易方程的认识。

成功之处:

1.抓住用比例解决问题的关键,体会用比例解决问题的优势。在教学中着重让学生找出题目中两种相关联的量,判断这两种量是否成比例,成什么比例。在例5中根据8吨水的水费是12.8元,可以得出每吨水的单价一定,所以水费和用水的吨数这两种量成正比例。也就是说,两家的水费和用水吨数的比值相等。因此可以写成y/x=y/x的形式。而在例6中根据每包20本和18包,可以得出总本数一定,所以包数和每包的本数成反比例。也就是说,每包的本数和包数的乘积相等,因此可以写成xy=xy的形式。

2.理清思路,归纳概括解题步骤。在教学完两个例题之后,让学生思考怎样用比例来解决问题,步骤是怎样的。通过学生的归纳总结得出:一是解设未知数x。二是找到两种相关联的量,判断它们是否成比例,成什么比例。三是列出比例式子形如:y/x=y/x(成正比例) xy=xy(成反比例)。四是解比例检验。

不足之处:

1.学生对于算术法掌握的较牢,有的学生不愿意接受用比例来解决问题,没有体会到用比例解决问题的优势,主要受定势思维的影响。

2.个别学生没有掌握住用正比例解决问题用y/x=y/x的形式,用反比例解决问题用xy=xy的形式,导致不会列式子。

再教设计:

从学生出现的问题出发,避免出现类似的错误,从根本上去解决学生的易错易混淆的问题。

《用比例解决问题》教学反思(二)

《用比例解决问题》教学反思

本节课是在学习了正反比例之后的一个内容,这个内容的特点主要是运用比例知识解决实际问题。首先复习导入,一是找出哪一个量一定,二是如何判断另外两个相关联的量成什么比例,从而找出等量关系。在新课的教学中,围绕比例的知识特征提问:哪两种量是变化的?哪种量是固定不变的?使学生清楚这两种变量的比值一定还是乘积一定,它们成什么比例关系?然后根据比例关系写出等式。在教学中通过学生自主探究获得新知,然后通过“练”达到巩固和提高,自始至终让学生参与体验解决问题的全过程。但是,在实际教学过程中,还存在着很多的问题:

(1)从学生回答问题看,题目中没有直接告诉哪个量一定,需要学生自已从已知的两个量中发现定量,因此学生有时找不准什么量一定,这样对判断两种相关联的量成什么比例出现问题。

(2)在教学过程中,总是对学生不放心,这是一个不可忽视的问题。比如:在教学用反比例解决问题时,我完全可以放手让学生自己独立完成,但我总是担心怕学生不会做,还是自已包办代替讲了这样既禁锢了学生的思维,又耽误了教学时间,那些会做的学生也觉得太哆嗦。

(3)用比例知识解决实际问题,难度降低,正确率比较高,但是如果难度稍有提高,正确率就难说了。学生一般都不喜欢用比例方法,而喜欢用算术方法解答。

《用比例解决问题》数学教案 8

一、教学目标:

1、加深对反比例概念的理解,掌握运用比例知识解决实际问题的方法和思路,能用反比例知识解决有关问题。

2、提高学生对应用问题数量关系的分析能力和对正、反比例的判断能力。

二、教学重点:

用比例知识解决实际问题。

三、教学难点:

正确分析题中的数量关系,列出方程。

四、教学过程:

(一)、复习

1、成正比例和成反比例的量的判断。

2、用正比例解决问题的步骤。

一:找到题中不变的量;

二:根据不变的量写出关系式;

三:判断成什么比例;

四:列出比例式;

五:解比例。

(二)、探究新知

教学例5:一批书如果每包20本,要捆20包,如果每包30本,要捆多少包?

A.提出问题组织学生讨论:

① 问题中有哪两种量?

② 它们成什么比例关系?你是根据什么判断的?

③ 根据这样的比例关系,你能列出等式吗?

B. 根据反比例的意义列出方程并解方程。

根据比例的意义,学生独立完成,并在小组中交流。

学生汇报:

解:设要捆元。

30=2018

= 36030

=12

答:要捆12包。

五、应用反馈 课件出示:

1、 教材60页做一做第2题。(单价乘数量等于总价,总价一定)

2、 课件上的练习题。

指名扮演,独立练习,集体订正。 巩固新知,训练解题能力。

六、课堂小结 通过这节课的学习,你有哪些收获?

《比例的应用》教学设计 9

教学内容:

比例尺知识与技能:使学生理解比例尺的含义,会应用比例的知识求平面图的比例尺,能根据比例尺求出图上距离或实际距离。

情感态度与价值观:

学会用比例尺知识解决问题,培养学生解决实际问题的'能力。

教学重点、难点:

理解比例尺的含义,能根据比例尺求出图上距离或实际距离。

教学过程:

一、导入(略)

二、探索新知

1、教学比例尺的意义

(1)、教师讲解:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,我们给它起一个名字叫做“比例尺”。(板书)

(2)、教师指导学生看教科书,让学生说出它们的比例尺各是多少,表示什么意思。

(3)、教师指出:比例尺与一般的尺不同,这是一个比,不应带计量单位。

2、线段比例尺与数值比例尺的改写。出示例1:把教材第49页线段比例尺改写数值比例尺。

(1)、说一说方法。

(2)、改写图上距离:实际距离=1㎝:50㎞=1㎝:5000000㎝ =1:5000000

3、教学根据比例尺求图上距离或实际距离。教学例2出示例2,指名读题,并说出题目已知什么,要求什么。教师板书解答过程

解:设地铁1号线的实际距离为Xcm。 10:x=1:500000 X=500000×10 X=5000000 5000000㎝=50㎞巩固练习。做第52页的“做一做”。指名做,集体订正。

三、布置作业

完成《练习册》第19页的练习。

《用比例解决问题》数学教案 10

一、教学目标:

1、加深对反比例概念的理解,掌握运用比例知识解决实际问题的方法和思路,能用反比例知识解决有关问题。

2、提高学生对应用问题数量关系的分析能力和对正、反比例的判断能力。

二、 教学重点:用比例知识解决实际问题。

三、 教学难点:正确分析题中的数量关系,列出方程。

四、教学过程:

(一)、复习

1、成正比例和成反比例的量的判断。

2、用正比例解决问题的步骤。

一:找到题中不变的量;

二:根据不变的量写出关系式;

三:判断成什么比例;

四:列出比例式;

五:解比例。

(二)、探究新知

教学例5:一批书如果每包20本,要捆20包,如果每包30本,要捆多少包?

A.提出问题组织学生讨论:

① 问题中有哪两种量?

② 它们成什么比例关系?你是根据什么判断的?

③ 根据这样的比例关系,你能列出等式吗?

B. 根据反比例的意义列出方程并解方程。

根据比例的意义,学生独立完成,并在小组中交流。

学生汇报:

解:设要捆元。

30=2018

= 36030

=12

答:要捆12包。

五.应用反馈 课件出示:

1. 教材60页做一做第2题。(单价乘数量等于总价,总价一定)

2. 课件上的练习题。

指名扮演,独立练习,集体订正。 巩固新知,训练解题能力。

六.课堂小结 通过这节课的学习,你有哪些收获?

用比例解决问题 11

教学内容:教科书p58~59例5、例6,练习九3~7题。教学目标:1、使学生掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。3、培养学生良好的解答应用题的习惯。教学重点:用比例知识解答比较容易的归一、归总应用题。教学难点:正分析题中的比例关系,列出方程。教学过程:一、复习

1.一辆汽车行驶的速度不变,行驶的时间和路程。

2.一辆汽车从甲地开往乙地,行驶的时间和速度。

看上面的题,回答下面的问题:

(1)各有哪三种量?

(2)其中哪一种量是固定不变的?

(3)哪两种量是变化的?这两种量是按怎样的规律变化的?他们成是什么关系?3、这节课,我们就应用比例的知识解决一些实际问题。二、新授1、教学例5(1)出示例5:张大妈家上个月用了8吨水,水费是2.8元。李奶奶家上个月用了10吨水,李奶奶家上个月的水费是多少钱?(2)学生读题后,思考和讨论下面的问题:① 问题中有哪两种量?② 它们成什么比例关系?你是根据什么判断的?③ 根据这样的比例关系,你能列出等式吗?(3)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。(4)根据正比例的意义列出方程:12.88=χ10     解:设李奶奶家上个月的水费是χ元。                                 8χ= 12.8×10                    χ=128÷8                    χ= 16           答:李奶奶家上个月的水费是16元。(5)将答案代入到比例式中进行检验。2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,并交流订正,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)3、教学例6(1)出示例6:书店运来一批书,如果每包20本,要捆18包。如果每包30本,要捆多少包?(2)学生根据例5的解题思路,思考:题中已知两个量?什么是一定的?已知的两个量成什么关系?思考后独立解答。(3)指名板演,全班评讲。4、做一做:教科书p59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。三、巩固练习1、教科书p61练习九第3、4题。学生读题后,先说说题中哪个量是一定的,再独立进行解答。2、完成练习九第5、6、7题。四、总结    用比例知识解决问题的步骤是什么?

比例解决问题教学设计 12

教学内容:

教科书第59页例5以及相关练习题。

教学目标:

1、使学生能正确判断题中涉及的量是否成正比例关系。

2、进一步巩固正比例的意义,掌握用正比例方法解应用题的方法和步骤,能正确地用正比例的方法来解答应用题。

3、培养学生运用所学知识解决实际问题的能力,培养学生勇于探索精神。

4、在成功解决生活中的实际问题中体会数学的价值。

教学重点:

利用已学的正比例的意义,通过自己探索掌握解答正比例应用题的方法。

教学难点:

正确判断两个量是否成正比例的关系,找出相等关系并列出含有未知数的等式。

教具准备:

小黑板

教学过程:

一、复习铺垫,激发兴趣。

1、填空并说明理由。

(1)速度一定,路程和时间成比例。

(2)单价一定,总价与数量成比例。

(3)每块地砖的`大小一定,砖的块数和所铺的总面积成比例。

【设计意图:通过复习,让学生温故而知新,为学习下面的内容铺垫。】

3、提出问题:老师请你用一把米尺去测量学校旗杆的高度,你能行吗?

生1:把旗杆放下量。

生2:爬上去量。

生3:利用影子的长度量。(如果没有学生说教师可做适当引导。)

师:相信通过这一节课的学习,你一定会找到解决的方法的。

【设计意图:激起学生学习这习欲望,欲望是产生动机的催化剂。】

二、揭示课题、探索新知。

1、小黑板出示例5

张大妈:我们家上个月用了8吨水,水费是12.8元。

李奶奶:我们家用了10吨水,上个月的水费是多少钱?

思考:题中告诉了我们哪些信息?要解决什么问题?

师:你能利用数学知识帮李奶奶算出上个月的水费吗?

(1)学生自己解答。

(2)交流解答方法,并说说自己想法。

算式是:12.8÷8×10

=1.6×10

=16(元)。(先算出每吨水的价钱,再算出10吨水需要多少钱。)

(也可以先求出用水量的倍数关系再求总价。)

10÷8×12.8

=1.25×12.8

=16(元)

《用比例解决问题》数学教案 13

教学目标:

1、掌握用比例知识解答以前学过的用归一、归总方法解答的应用题的解题思路,能进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解,沟通知识间的联系。

2、提高学生对应用题数量关系的分析能力和对正、反比例的判断能力。

教学重点:

用比例知识解答比较容易的归一、归总应用题。

教学难点:

正确分析题中的比例关系,列出方程。

教学过程:

一、导入新课。(课件出示)

1、判断下面每题中的两种量成什么比例?

(1)速度一定,路程和时间.

(2)路程一定,速度和时间.

(3)单价一定,总价和数量.

(4)每小时耕地的公顷数一定,耕地的总公顷数和时间.

(5)全校学生做操,每行站的人数和站的行数.

2、下面各题中各有哪三种量?那种量一定?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能列出等式吗?

(1)用一批纸装订练习本,每本30页,可装订200本,每本50页,可装订120本。

(2)张大妈家上个月用了5吨水,水费是10元。照这样计算,李奶奶家用了10吨水,水费是20元。

我们已经学习了比例,比例的基本性质,正比例,反比例,今天这节课我们就运用比例的知识来解决实际问题。板书课题:用比例解决问题。

二、揭示目标:

1、进一步熟练地判断成正、反比例的量。

2、学会用比例知识解答比较容易的应用题

三、探究新知。

例5:张大妈家上个月用了8吨水,水费是12.8元。照这样计算,李奶奶家用了10吨水,水费是多少元?

自学指导一:

1、理解题意,用以前学过的方法解答。

2、题中有哪两种量?它们成什么比例关系?并说出理由。

3、根据这样的比例关系,设李奶奶家上个月的水费是x元钱。你能列出等式吗?

4、解比例,检验,作答。

小结:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

解:设李奶奶家上个月的水费是χ元。

8χ= 12.8×10

χ=128÷8

χ= 16

答:李奶奶家上个月的水费是16元。

检验1:小明买了4枝圆珠笔用了6元。小刚想买3枝同样的圆珠笔,要用多少钱?

例6:一批书,如果每包20本,要捆18包,如果每包30本,要捆多少包?

自学指导二:

1、题中有哪两种量?它们成什么比例关系?并说出理由。

2、根据这样的比例关系,设要捆x包。你能列出等式吗?

3解比例,检验,作答。

检验2:学校小商店有两种圆珠笔。小明带的钱刚好可以买4枝单价是1.5元的,如果他想都买单价是2元的,可以买多少枝?

交流总结:解答用正、反比例解的应用题的步骤:

1、判断题中哪两种量是相关联的量?成不成比例?成什么比例?

2、设未知数X,注上单位名称。

3、根据正、反比例的意义列出比例式。

4、解比例。

5、检验、作答。

四.巩固延伸:

1、食堂买3桶油用780元,照这样计算,买8桶油要用多少钱?

2、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?

3、500千克的海水中含盐25千克,120吨的海水含盐几吨?

课堂小结。

今天这节课你有什么收获?能说给大家听听吗?用比例知识解决问题的关键是什么?

课堂作业。

教科书P62练习九第3、7题。

板书设计:

用比例解决问题

1、判断题中哪两种量是相关联的量?成不成比例?成什么比例?

2、设未知数X,注上单位名称。

3、根据正、反比例的意义列出比例式。

4、解比例。

5、检验、作答。

用比例解决问题教学反思 14

《用比例解决问题》这节课教学设计主要抓住比例解答应用题的特征进行的。回顾本节课教学,有以下几点感受颇深:

首先进行复习,一是两种相关联的量成什么比例关系,二是如何判断两种相关联的量成什么比例,怎样找出等量关系。为新课教学作好铺垫。

新知的教学采用了以旧知引路——学生自主探索——小组合作学习的形式进行,注意给学生充分交流的机会与思考的空间。整节课的设计主要体现在“问”与 “练”字上,怎样问,练什么,怎么练,我都做了认真的思考,深入研究,特别是在设计教学过程时把学生放在首位,考虑学生已经会什么,他们现在最需要什么。学生通过什么途径来解决,是独立思考还是合作交流等等问题。做到心中有数,有的放矢。因此,一节课自始至终让学生参与体验解决问题的全过程。学生根据老师的巧妙设问和富有启发性的引导,通过自主学习、合作交流,很快就掌握了新课的内容。

但是,在实际教学过程中,这堂课的教学也还存在着不少问题:

比如,对学生基础估计太高,从学生回答问题看,复习时学生对判断哪两种相关联的量成什么比例掌握不错,但到了比例应用题里,我围绕比例应用题的特征设问:题目中有三种量?哪种量是固定不变的?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能写出等式吗?一部分学生不会确定哪种量一定,怎样找出等量关系掌握不好,语言表达不是很准确、完整。这点我备课时没作为重点。学生是课堂的主体,如果课堂上学生基本知识没过关,课堂也就失去了色彩。其次,在教学过程中,我有对学生不放心的心态。比如:在教学例6时,学生有了正比例应用题的基础,对于反比例应用题我完全可以放手让学生自己独立完成,但我总是担心怕学生不会做,出一些思考题让学生交流讨论,然后再做题。这样既禁锢了学生的思维,又耽误了教学时间。另外,练习题的设计与学生生活实际结合不算很紧密,以后尽量设计一些能引起学生兴趣,对学生有吸引力的题目,来激发学生兴趣,提高练习的积极性,从而加深了学生对新课的认识。

用比例解决问题教学反思 15

今春,我校开展了“三生”课堂教学竞赛活动。在这次活动中,我和六一班的吕梅老师进行了同课异构,执教了六年级数学下册第三单元《用正比例解决问题》一课。本节课主要是教学利用比例的意义及基本性质,正比例、反比例的意义等基本知识来解决一些与实际生活相关的问题。依据“三生”课堂的特点,结合学生实际和教材内容,我制订学习目标如下:知识与技能目标:会用正比例知识解答含有正比例关系的问题;过程与方法目标:在解决问题的过程中熟练判断两种相关联的量是否成正比例,从而加深对正比例意义的理解;情感态度与价值观目标:增强学生探究解决问题策略的能力。学习重难点是利用正比例关系列出含有未知数的等式。新课程理念告诉我们,教学过程应当是一个动态生成的过程。本节课的精彩,我认为就源于生成。

一、教材的整合奠定生成

在课本中比例的应用这部分内容是按照比例尺、图形的放大与缩小、用比例解决问题的顺序安排的。但是根据我班学生的生活学习实际,我选择了把用比例解决问题放在比例的应用最前面学习。事实证明,教材的整合是正确的,它奠定了本节课生成的精彩。

当我用课件出示例5后,学生一下子就议论开了:8吨水是数量,水费12.8元是总价,单价一定,水费随着数量的变化而变化,水费和数量成正比例。这和我当初的预设是不一样的,我的预设是学生会说出用算术方法解决。学生一下子就能说出用比例知识可以解决,我想就是源于刚学习过正反比例的意义。此时,我很庆幸对教材进行了整合,这样的生成是有益的。

二、知识的迁移塑造生成

知识的迁移就是原有的知识结构对新的学习的影响。就是因为这种影响就会在学生的学习过程中塑造出多种生成。

当我让学生汇报例5的解法时,肖俊飞同学的回答是X :8 = 19.2 : 12.8 。我立即惊讶于学生的聪明,这是根据前几节课学习的比例的基本性质模仿着列的,这个比例也是对的,虽然没有按照这节课的正比例关系式来列,没有按照老师的预设来进行,但是我很高兴有了这样的生成,那么围绕这个生成,后面的学习就轻松多了。

教学完本节课后,我认为教学中也有不足:

因为每吨水的价钱一定,所以水费和用水的吨数成正比例,也就是说,两家的水费和用水吨数的比值相等。这个比值相等应该是学生最应该详谈的地�

其次,最后的巩固练习,有点过于简单,层次不清楚,形式单一。

就我个人的备课情况来说,过多的考虑了教师如何教,较少的分析学生,对学生的学习情况预设简单,有种想牵着学生走的思想,课堂教学不够开放。

假如让我重教这节课,我打算这样改进:

首先复习铺垫的时候增添一些求每份是多少的和求几份是多少的一步计算的解决问题的题目,这样做后,我相信当我问学生:怎样求李奶奶家上个月的水费是多少钱,学生会很轻松的用算术方法解决。

再者,再次教学时,我会放手更多一些,让学生围绕这几个问题进行思考和讨论:问题中有哪两种量?它们成什么比例关系?你是根据什么判断的?根据这样的比例关系,你能列出等式吗?把本节课的重难点分散到这些问题中,学生在讨论汇报中学习新知。

最后的练习,我也想增加一道题目中数据单位不同的用比例解决的问题。提醒学生认真审题,还想增加一道“比例连连看”的游戏题,以增强学生的学习兴趣。

总之,不管怎样设计教学过程,我们的教学对象是学生,学生是有生命的个体,课堂上随时都有可能出现各种动态变化,即生成,所以,作为教师只有积极创造一种宽容氛围,用心呵护生成,才能把课堂教学引向深入,变得精彩。

《用比例解决问题》数学教案 16

学习目标:

使学生掌握运用比例解决问题的方法,能正确运用正、反比例知识解决有关问题,发展学生的应用意识和实践能力。

学习重难点:

重点:运用正、反比例解决实际问题。

难点:正确判断两种量成什么比例。

学习方法

尝试教学法、引导发现法等。

学习过程:

一、旧知铺垫

1、下面各题两种量成什么比例?

(1)一辆汽车行驶速度一定,所行的路程和所用时间。

(2)从甲地到乙地,行驶的速度和时间。

(3)每块地砖的面积一定,所需地砖的块数和所铺面积。

(4)书的总本数一定,每包的本数和包装的包数。

过程要求:

①说一说两种量的变化情况。

②判断成什么比例。

③写出关系式。

如:

2、根据题意用等式表示。

(1)汽车2小时行驶140千米,照这样速度,3小时行驶210千米。

(2)汽车从甲地到乙地,每小时行70千米,4小时到达。如果每小时行56千米,要5小时到达。

70×4=56×5

二、探索新知

1、教学例5

(1)出示课文情境图,描述例题内容。

板书:8吨水10吨水

水费12.8元水费?元

(2)你想用什么方法解决问题?

过程要求:

①学生独立思考,寻找解决问题的方式。

②教师巡视课堂,了解学生解答情况,并引导学生运用比例解决问题。

①汇报解决问题的结果。

引导提问:

A、题中哪两种量是变化的量?说说变化情况。

B、题中哪一种量一定?哪两种量成什么比例?

c、用关系式表示应该怎样写?

②板书:解:设李奶奶家上个月的水费是X元

8X=12.8×10

X=

X=16答:略

(3)与算术解比较。

①检验答案是否一样。

②比较算理。算述解答时,关键看什么不变?

板书:先算第吨水多少元?

12、8÷8=1.6(元)

每吨水价不变,再算10吨多少元。

1、6×10=16(元)

(4)即时练习。

王大爷家上个月的水费是19.2元,他们家上个月用了多少吨水?

过程要求:

①用比例来解决。

②学生独立尝试列式解答。

③汇报思维过程与结果。

想:因为每吨水的价钱一定,所以水费和用水的吨数成正比例。也就是说,水费和用水吨数的比值相等。

解:设王大爷家上个月用了X吨水。

12.8X=19.2×8

X=

X=12

或者:

16X=19.2×10

X=

X=12

1、教学例6。

(1)出示课文情境图,了解题目条件和问题。

(2)说一说题中哪一种量一定,哪两种量成什么比例。

(3)用等式表示两种量的关系。

每包本数×包数=每包本数×包数

(4)设末知数为X,并求解。

(5)如果要捆15包,每包多少本?

1、完成课文“做一做”。

2、课堂小结。

三、巩固练习

完成练习九第3~5题。

用比例解决问题教学反思 17

“用比例解决问题”是本单元最后一部分知识,也是学习了正比例和反比例后的实践应用。本节课中我力求通过知识的迁移,结合学生的生活经验,让学生正确判断两种相关联的量之间的比例关系,再列出相应的比例式解决问题在实际教学中,我把握本节课的重点,采用开放式的教学方法,将课堂的主动权放手交给学生,让学生在独立探索、独立尝试、同桌交流、质疑辨析、对比归纳、概括小结、拓展延伸中轻松、高效地掌握本课知识。引导学生按步骤、按思路用比例来解决问题,在进行变式练习时学生顺理成章地理解了题意,学会了用比例解决问题。

但是,学生一般都不喜欢用比例方法解答,而喜欢用算术方法解答,我想这与我没有很好地想办法让学生体会用比例解决问题”的优势有关吧,下一阶段必须要注意这一问题的学习了。

用比例解决问题教学反思 18

用比例解决实际问题这部分教材包括正、反比例两个例题,它的知识在一定的程度上含有辨证的思想,让学生明白在某个量不变的情况下,相关联的两个量的变化与这个量之间的因果关系。在教学本课时,我通过引导学生认真分析,讨论题中不变量、变量中的比例关系,找出等量关系进而列出方程,从而使学生掌握用比例解决实际问题的`基本方法。

反思整个教学过程,本节课教学设计主要抓住用比例解答应用题的特征进行的,是在学生学完正、反比例意义的基础上,用比例的方法来解决以前所熟悉的归一、归总应用题。

首先,我复习了正、反比例的意义;接着,我把书中的例题改成了学生熟悉的速度,时间,路程的例题,然后根据例题提出问题,设问:用比例解首先要找到什么(两种相关联的量),判断什么(这两种相关联的量成什么比例),正、反比例相对应两个数的什么一定(商、积一定)等,然后通过“练”达到巩固和提高 。特别是在设计教学过程时我把学生放在了首位,考虑学生已经会什么,他们现在最需要什么,学生通过什么途径来解决,是独立思考还是合作交流呢,学生在这次教学活动中能得到什么?不同学生有什么不同的收获等问题,做到心中有数,有的放矢。因此,一节课自始至终让学生参与体验解决问题的全过程。学生根据教师的巧妙设问,和富有启发性的引导,通过自主学习和 合作交流,很快学生就掌握了新课的内容。这节课既重视比例解应用题的解题方法的教学,又鼓励解决问题策略的多样化,从中发展学生的个性,发展了学生的能力。

本节课教学的收获是我给了学生充分交流的机会与思考的空间,在学生原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生加深对正、反比例意义的理解,有利于沟通知识间的联系,同时,由于解答时是根据比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。

回顾本次教学,还有很多方面有待改进和提高。

一、由于教学两道例题,练习的时间较仓促,要尽量设计一些引起学生兴趣,对学生有吸引力的题目,来激发学生兴趣,提高练习的积极性。

二、要多让学生用自己的语言来表达,训练学生对数学知识表达的能力。

三 、教学中要注意培养学生的多向思维,鼓励学生用不同的方法解决相同的问题,做到复习旧知与巩固新知两不误。同时对于学生的想法要及时肯定,注意保护学生的学习热情,让学生在解决问题中体验成功的喜悦。

总之,一节课下来,感觉是不错的,但作业的效果却不是很好。很多学生对用比例来解决问题还是不习惯,有正、反比例互相混淆的现象,说明学生对题中的数量关系分析的还不是很透彻,特别是当题中的条件有所变化时,学生理解起来更困难。而且大部分学生不喜欢用这种方法,喜欢用算术方法解答,应引起我们进一步反思。

《比例的应用》教学设计 19

教学目标:

使学生进一步理解和掌握用比例知识解答应用题的方法。

抓住解题关键进行熟练准确的判断,从而找准题中的`等量关系。

通过与算术方法解答相比较,加强知识之间的联系,使学生进一步理解能用比例知识解答应用题的数量关系。

教学过程:

师:谁能够说说用比例知识解应用题的关键是什么?

判断下题中各量成什么比例?并说明理由?

指导学习题例。

让学生独立解答例7。

在弄清题意后,把例5未完成的部分写完整然后比较这两种解答方法的异同点。

相同点:都是抓住商一定来建立等量关系列出方程或比例式解答的。

不同点:第一种解法是直接设所求问题为X。

第二种解法是间接设,即解出X后,还要用X减3才是所求问题。

师:除了这两种方法解答外,还能用其它方法吗?请用算术方法解答例7。

学习例6

师:请同学们在教材上完成例6后,再用算术方法解答。说说用比例解例6的关键。

对比小结

比较例5例6有什么不同?分别是根据什么关系来解答的?

(强调用比例知识解应用题,关键是判断题中的数量成什么比例,再根据题中比例关系找准等量关系,把其中未知数量用X代替,列出方程解答)

算术解法和比例解法的比较和联系。

观察算式(例5)

练习巩固

笔答题:教材117页1~3题。

全课总结。

《用比例解决问题》数学教案 20

一、教学目标

(一)知识与技能

在具体情境中认识、理解成正比例的量的意义,掌握和运用正比例知识解决问题。

(二)过程与方法

通过让学生尝试解决问题的过程,培养学生分析问题和解决问题的能力。

(三)情感态度和价值观

主动参与数学活动,感受数学与生活的联系,树立学习数学的信心。

【目标解析】本节课的主要内容是用正比例的意义解决问题。学生在之前的学习中实际上已经接触过这类问题,可用归一、归总和列方程的方法来解答。这里主要是学习用正比例知识来解答,通过解答使学生进一步熟练地进行判断成正比例的量,加深对正比例概念的理解,也为学生的后续学习打下基础做好准备。同时也巩固和加深对所学的简易方程的认识。

二、教学重难点

教学重点:使学生能正确判断题中涉及的量是否成正比例关系,并能利用正比例的关系列出含有未知数的等式,运用比例知识正确解决问题

教学难点:利用正比例的关系列出含有未知数的等式。

三、教学准备

课件。

四、教学过程

(一)复习回顾

1.说说正比例、反比例的相同点和不同点。

2.判断下列每题中的两个量是不是成比例,成什么比例?

(1)已知A÷B=C。

当A一定时,B和C()比例;

当B一定时,A和C()比例;

当C一定时,A和B()比例。

(2)购买课本的单价一定时,总价和数量的关系。

(3)总路程一定时,速度和时间的关系。

【设计意图】通过比较和判断,让学生加深对正比例、反比例意义的理解,使学生体会到数学在生活中的运用,同时为新知的学习做好准备。

(二)探究新知,培养能力

1.提出问题。

教师:看来同学们能正确判断这两种量成什么比例关系了,这节课我们一起运用比例知识来解决一些实际问题。

课件出示教材第61页例5。

思考:题中告诉了我们哪些信息?要解决什么问题?

教师:你能利用数学知识帮李奶奶算出上个月的水费吗?

2.解决问题。

(1)学生尝试解答。

(2)交流解答方法,并说说自己的想法。

教师:谁愿意来说一说你是怎么解决的?

预设1:

28÷8×10

=3.5×10

=35(元)

(先算出每吨水的价钱,再算出10吨水需要多少钱)

预设2:

10÷8×28

=1.25×28

=35(元)

(也可以先求出用水量的倍数关系,再求总价)

教师:谁和这位同学的方法一样?

【设计意图】用以往学过的方法解决例题,有助于从旧知跳跃到新知的学习,同时有利于用比例解决问题的检验,帮助学生在后面的学习中构建知识结构。

3.激励引新。

教师:像这样的问题也可以用比例的知识来解决,我们今天就来学习用比例的知识进行解答。(板书课题:用比例解决问题)

课件出示以下问题,让学生思考和讨论:

(1)题目中相关联的两种量是()和( ),说说变化情况。

(2)()一定,()和()成()比例关系。

(3)用关系式表示是()。

(4)集体交流、反馈。

板书:

教师概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

(5)根据正比例的意义列出比例式(方程)。

学生独立完成,教师巡视。

反馈学生解题情况。

解:设李奶奶家上个月的水费是x元。

28:8=x:10或()

8x=28×10

x=280÷8

x=35

答:李奶奶家上个月的水费是35元。

(6)将答案代入到比例式中进行检验。

教师:�

【设计意图】“人人都能获得良好的数学教育,不同的人在数学上获得不同的发展”是课标的教学理念,为此让学生通过合作、交流从而解决问题,能使他们增强学习的信心、能给他们自信。在交流中,让学生充分地表达自己的见解,培养学生的辩证思维能力和口语交际能力。

4.变式练习。

教师:刚才我们用归一法和比例法帮李奶奶解决了水费的问题,同学们真不简单,瞧!王大爷又遇到了什么问题呢?(出现下面的练习)

张大妈:我们家上个月用了8吨水,水费是28元。王大爷家上个月的水费是42元,他们家上个月用了多少吨水?

(1)比较一下此题和例5有什么联系和区别?

(2)学生独立用比例的知识解决这个问题。指名板演。(教师巡视)

(3)集体订正,请学生说一说是怎样想的。

5.概括总结。

教师:刚才我们用正比例知识帮李奶奶和王大爷解决了生活中的水费问题,请大家回忆一下解题思路,再想一想用正比例解决问题的思考过程是怎样的。

学生讨论交流,汇报。

(1)分析找出题目中相关联的两种量。

(2)判断它们是否是正比例关系。

(3)根据正比例的意义列出比例。

(4)最后解比例。

(5)检验作答。

教师总结:同学们不但会解决问题,而且还善于归纳总结方法。就像大家想的那样,先分析题中的数量关系,判断相关联的两种量成什么关系,根据问题中的等量关系列出方程,解方程并检验作答。

【设计意图】本着“以学生发展为本”的理念,围绕生活中的水费问题,让学生经历“尝试──理解──总结”的全过程,从而理解、掌握用正比例解决问题的方法,使学生解决问题的能力有一个提升。

(三)巩固练习

1.只列式不计算。

(1)一个小组3天加工零件189个,照这样计算,9天可加工零件x个。

(189:3=x:9)

(2)小明买了4支圆珠笔用了6元。小刚想买3支同样的圆珠笔,要用x元钱。

(x:3=6:4)

2.用正比例解决问题。

(1)小兰的身高1.5米,她的影长是2.4米。如果同一时间、同一地点测得一棵树的影子长是4米,这棵树有多高?

(2)小红计划每天跳绳600下,2分钟跳了240下,照这样计算,还要跳多少分钟才能完成计划?

【设计意图】通过即时练习巩固,增强学生对具体情境中成正比例的量作出判断和解释的能力,能有条理地解释问题解决的思考过程,有助于提高学生解决问题的能力。

(四)课堂小结,拓展延伸

同学们,谁来说说,上了这节课,你收获了什么?

【设计意图】课堂总结,引导学生反思每节课的收获,整理一节课所学习的知识,提高学生归纳、整理的能力,起总结提升的作用。

用比例解决问题教学反思 21

纵观这节课的教学,本人主要有以下几个方面的感受:

1、信息窗4是用正比例的意义来解决基本的应用题。为了加强知识间的联系,我先让学生用以前学过的方法(算术法和用方程解)解答,然后过渡到用正比例的意义来解决问题的教学。通过问答式帮助学生梳理用正比例解决问题的思考过程。

2、通过进行比较,加深方程和比例概念的理解和正确使用。

3、通过对比分析用方程解和用比例解的思考过程,引导学生独立思考概括出用正比例解决问题的基本策略,提高学生运用正比例解决问题的有效性,也培养了学生参与知识结构的建构意识,同时提高了学生的概括能力和口头表达能力。

4、备课时,没有充分考虑学生对本节课知识的元认知,过高预测学生的预习能力,造成课堂的懈怠。

5、时间分配把握不准,复习阶段占用时间过多,造成教学重点不突出。

6、由于过度关注课堂的生成和对知识结构的重视,忽略了本节课的教学任务,造成没有按时完成教学任务。学生没有时间进行即时练习对新知识的巩固,没有达到预期的教学目标。

《用比例解决问题》数学教案 22

教学内容:

人教版课标教材六年级下册第59—60页 例5、例6。

教学目的:

1、让学生掌握用正、反比例的方法解决问题。

2、使学生体验由算术解法向比例解法的思维转化过程。

3、形成解题多样化技能。

教学重难点: 重点:学会用正反比例方法解决问题。

难点:在具体情境中区别用何种比例解决问题。

教学过程:

一、 复习

师:同学们,这段时间我们一直在学习有关正、反比例的知识。下面,请看复习题。

(出示题目)

1、a×b=c(a、b、c均不等于0)

当a一定时,b和c成什么比例?

当b一定时,a和c成什么比例?

当c一定时,a和b成什么比例?

2、速度×()=路程

工作总量÷( )=工作时间

( )×数量=总价

总本数÷( )=每包本数

每袋重量×( )=总重量

师:这节课,我们一起来学习用解决问题。

二、 新授

1、出示例5

① 学生第一反映怎么解。小结,这是用的我们以前学的归一的办法。

② 教师引导由加油站汽车加油付款比较,找出单价不变,建立关系式。

水费:吨数=单价

③ 学生述说,教师板演用正比例解法的书写过程。

④ 出示书上第二问,学生回答列式。

巩固练习:

(1)、小明买了4枝圆珠笔用6元。小刚想买3枝同样的圆珠笔,要用多少钱?

(2)、我国发射的科学实验人造地球卫星,在空中绕地球运行6周需要10.6小时,运行14周需要用多少小时?

(3)、师徒合作加工600个零件,8天加工了100个零件,照这样计算,剩下的零件还需要多少天才能加工完?

小结:首先找相关联的量,判断成什么比例;接着列方程;最后解方程并检验。

2、出示例6(学生自己解答)

① 抓住不变的东西----总的本数判断成反比例关系

② 建立关系式:每包本数×包数=总数

③ 学生述说,教师板演用反比例解法的书写过程。

④ 出示书上第二问,学生回答列式。

巩固练习:

(1)学校小商店有两种圆珠笔。小明带的钱刚好可以买4枝单价是1.5元的。如果他想都买单价是2元的,可以买多少枝?

(2)车队向灾区运送一批救灾物资,去时每小时行60km,6.5小时到达灾区。回来时每小时行78km,多长时间能够返回出发地点?

(3)生产一批水泥,原计划每天生产150吨,可按时完成任务。实际每天增产30吨,结果只用25天就完成了任务。原计划完成生产任务需要多少天?

3、深化练习:

一辆汽车从甲地开往乙地,计划每小时行60km,9小时到达。但实际上2.5小时只行了125km,照这样的速度,汽车要几小时才能到达乙地?

三、全课小结

《用比例解决问题》数学教案 23

教学过程:

一、 复习

1.一辆汽车行驶的速度不变,行驶的时间和路程。

2.一辆汽车从甲地开往乙地,行驶的时间和速度。

看上面的题,回答下面的问题:

(1)各有哪三种量?

(2)其中哪一种量是固定不变的?

(3)哪两种量是变化的?这两种量是按怎样的规律变化的?他们成是什么关系?

3、这节课,我们就应用比例的知识解决一些实际问题。

二、新授

1、教学例5

(1)出示例5:张大妈家上个月用了8吨水,水费是2.8元。李奶奶家上个月用了10吨水,李奶奶家上个月的水费是多少钱?

(2)学生读题后,思考和讨论下面的问题:

① 问题中有哪两种量?

② 它们成什么比例关系?你是根据什么判断的?

③ 根据这样的比例关系,你能列出等式吗?

(3)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

(4)根据正比例的意义列出方程:

解:设李奶奶家上个月的水费是元。

12.8/8=/10

8= 12.8×10

=128÷8

= 16 答:李奶奶家上个月的水费是16元。

(5)将答案代入到比例式中进行检验。

2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,并交流订正,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)

3、教学例6

(1)出示例6:书店运来一批书,如果每包20本,要捆18包。如果每包30本,要捆多少包?

(2)学生根据例5的解题思路,思考:题中已知两个量?什么是一定的?已知的两个量成什么关系?思考后独立解答。

(3)指名板演,全班评讲。

4、做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。

三、巩固练习

1、教科书P61练习九第3、4题。学生读题后,先说说题中哪个量是一定的,再独立进行解答。

2、完成练习九第5、6、7题。

四、总结

用比例知识解决问题的步骤是什么?

《用比例解决问题》数学教案 24

【教材分析】

本节课是在学生熟练掌握简单的求一个数的几分之几是多少的应用题的基础上进行教学的。本节课是让学生画线段图来分析题意,这部分内容是让学生用不同的方法,也就是不同的解题思路来分析。从而让学生理解和掌握这种稍复杂的分数乘法应用题的数量关�

【学情分析】

本节课是在学生熟练掌握简单的求一个数的几分之几是多少的应用题的基础上进行教学的,例2分析一个数量的两个部分与整体的关系,确定把什么看作单位1学生不难理解,教学时,要画线段图帮助学生理解题意,学生就不会感到有太大的困难了。例3分析的是两个量之间的关系,教学方法与例1相同。

【教学目标】

1、使学生掌握解答稍复杂的求一个数几分之几是多少的应用题的思路,并能正确解答。

2、提高学生分析解答应用题的能力,培养探索精神。

【教学重点】分析和掌握把什么量看作单位1及谁是谁的几分之几。

【教学难点】分析和理解两个数量的比校对于学生来说比较难些。

【教学过程】备注

活动一:创设情境,初步感知题意。

1、教师出示例2的情境图。

2、让学生结合图叙述题意。

活动二:动手画图,分析题意。

1、你能不能用上节课我们讲过的学习方法,借助于其它的方法来分析一下这道的意思呢?

学生动手画线段图,分析。小组交流。

与教师共同再一次感受如何画线段图。(教师板书)

重点让学生明确谁是单位1。

2、让学生说一说是怎样想的?确定解题的思路。

3、可能会有两种不同的思路。教师让学生用自己喜欢的方法解答。

4、全班交流,订正。

5、问:这两种解法有什么区别?有什么联系?

活动三:教学例3.

教师出示例3。

1、引导学生读题,理解题意。

2、根据这句话应当把什么看单位1?

3、学生试画出线段图,分析数量关系。

4、学生自己解答。

订正时,让学生说说是怎样分析的?与全班交流。

活动四:巩固练习。

1、完成21页中的做一做。

教师要求学生画线段图。

2、完成练习五中部分练习题。

订正时,让学生说说分析的思路。

活动五:课堂小结。

通过本节课的学习你都有哪些收获?

《用比例解决问题》数学教案 25

教学过程:

一、复习

1、一辆汽车行驶的速度不变,行驶的时间和路程。

2、一辆汽车从甲地开往乙地,行驶的时间和速度。

看上面的题,回答下面的问题:

(1)各有哪三种量?

(2)其中哪一种量是固定不变的?

(3)哪两种量是变化的?这两种量是按怎样的规律变化的?他们成是什么关系?

3、这节课,我们就应用比例的知识解决一些实际问题。

二、新授

1、教学例5

(1)出示例5:张大妈家上个月用了8吨水,水费是2.8元。李奶奶家上个月用了10吨水,李奶奶家上个月的水费是多少钱?

(2)学生读题后,思考和讨论下面的问题:

① 问题中有哪两种量?

② 它们成什么比例关系?你是根据什么判断的?

③ 根据这样的比例关系,你能列出等式吗?

(3)根据上面三个问题,概括:因为水价一定,所以水费和用水的吨数成正比例。也就是说,两家的水费和用水的吨数的比值是相等的。

(4)根据正比例的意义列出方程:

解:设李奶奶家上个月的水费是元。

12.8/8=/10

8= 12.8×10

=128÷8

= 16 答:李奶奶家上个月的水费是16元。

(5)将答案代入到比例式中进行检验。

2、修改题目:王大爷上个月的水费是19.2元,他们家上个月用多少吨水?(学生独立应用比例的知识来解答,并交流订正,使学生明确例5的条件和问题改变后,题目中水费和用水的吨数的正比例关系没变,只是未知量变了)

3、教学例6

(1)出示例6:书店运来一批书,如果每包20本,要捆18包。如果每包30本,要捆多少包?

(2)学生根据例5的解题思路,思考:题中已知两个量?什么是一定的?已知的两个量成什么关系?思考后独立解答。

(3)指名板演,全班评讲。

4、做一做:教科书P59“做一做”1、2题,让学生先判断两个量的关系,再进行解答。

三、巩固练习

1、教科书P61练习九第3、4题。学生读题后,先说说题中哪个量是一定的,再独立进行解答。

2、完成练习九第5、6、7题。

四、总结

用比例知识解决问题的步骤是什么?

用比例解决问题教学反思 26

《用比例解决问题》是本单元最后一部分知识是学习了正比例和反比例关系后的实践应用。本节课,在教学中教师力求通过知识的迁移,结合学生的生活经验,让学生借助函数关系间变量的对应规律,正确判断两种相关联的量之间的依存关系,根据它们的正、反比例关系,列出相应的比例式,解决问题。

在实际教学中,我把握本节课的重点,采用开放式的教学方法,将课堂的主动权放手学生,让学生在自己探索、独立尝试、同桌交流、质疑辨析、对比归纳、概括小结、拓展延伸中轻松,高效地完成了教学任务,反思本节课的成功之处,我有以下三点感悟:

一、课堂永远是无法完全预设的

本节课,课前的复习按照预期的设计顺利完成。当我出示例5后,学生默读题目,独立分析后,我鼓励学生自主探索,独立尝试解决问题,不到1分钟,同学们的小手就此起彼伏地浮现在桌面上,个个跃跃欲试,当2名学生将自己的思索展现在黑板上时,我不禁一惊,这两位学生竟然用了不同的解题方法,除了以前学过的归一、归总法,又出现了今天的新课方法,按我预先设计的方案,学生用以前的方法解决后,我将会出示一个自学提示,引导学生按步骤,按思路来用比例解决,学生会顺理成章地理解题意,学会用比例解决。没想到学生自己就能列出正确的比例,我顺势请板演的同学到黑板前讲一讲自己的思考,真没想到,这个孩子讲得头头是道,把我的“活”儿抢了。同学们听了她的讲解,顿时茅塞大开,把我连续出示的两个基本练习做得漂漂亮亮。

课后我反思这个环节,异常感慨,本来以为丝丝相扣的自学提示,会让学生在老师无形的指挥下,理解正比例应用题的思考方法,没想到一个不到1分钟的独立尝试,就让学生破解了我的预设,而后我的顺势相邀——请学生讲解,却让课程呈现了更为灿烂的一幕。课堂永远是无法预设的,当出现与预设不相符的状况时,教师一定要会调控,得当的调节能让课堂更加精彩。

二、错误点就是生成点

在进行变式练习时,同学们争先恐后地上讲台展示,马彪同学出现的错误给课堂带来了新的生成,我们习惯应用“总价÷数量=单价”,当单价一定时,可以列成正比例式,而马彪同学却将等式的左边写成“数量÷总价”,班内同学议论纷纷,我借势引导学生,抓住正比例关系的对应量对等的要点,使一个比例式拓展成了两个,让学生明白了,两个变量之间的对应规律和依存关系。课堂中无意的错误点,生成了新的知识点,让学广开世面,更深层次地理解最简单的函数知识。

三、真实的课堂,回生阻道

我喜欢真实的课堂,这节公开课,课前我一点儿都没有提示前面的知识。课堂上,当提问正比例和反比例关系时,很多学生都有些生疏,对量与量之间的变化规律有些陌生,经过老师提示后,学生们才回想起前面的概念,这部分所用的时间比预先多用了1分钟左右,虽然是大约1分钟的时间,却给我敲响了警钟,知识一定要常温常故,尽量避免学生的回生,更要防止知识的断层。

反思这节课,给我带来了很多启示,一位好的数学老师必须具备全面、科学调控课堂的能力,及时抓住课堂的生成点,适时点拨,拓展延伸。与此同时,教师还不能忽视知识的前后联系,不能让知识搁浅,做好做实日常工作,让数学思想、数学方法、数学知识扎根学生心中。

用比例解决问题 27

一、说教材

1、教学内容:

这部分内容是在教学过比例的意义和性质,成正、反比例的量的基础上进行教学的,这是比和比例知识的综合运用。教材首先说明应用正、反比例的知识可以解决一些实际问题。例5教学应用正比例的意义来解的基本应用题。为了加强知识之间的联系,先让学生用以前学过的方法解答,然后教学用比例的知识解答。要判断题目中两种相关联的量成什么比例关系,以及列出比例式所需的相等关系,然后再设未知数,列出等式(方程)解答。例6教学是反比例意义的应用,反比例应用题中所涉及到的基本问题的数量关系是学生以前学过的,并能运用算术法解答的。那么本节课学习内容是在原有解法的基础上,通过自主参与,发现、归纳出一种用反比例关系解决一些基本问题的思路和计算方法。从而进一步提高学生分析解答应用题的能力。

成正、反比例的量,在生活实际中应用很广,学生在前两年的学习中,已接触过这种情况的问题,如归一、归总应用题,只不过那时是就题论题,没有上升到一般规律。这里主要使学生学习用比例的知识来解答,在原有认识的基础上,再让学生用其他方法解答同一题目,概括出一般规律。通过解答使学生进一步熟练地判断成正、反比例的量,从而加深对正、反比例意义的理解。有利于沟通知识间的联系,也为中学的数学、物理、化学等学科中应用比例知识解决一些问题做较好的准备。同时,由于解答时是根据正、反比例意义来列等式,又可以巩固和加深对所学的简易方程的认识。所以,在教学上要十分重视从旧知识引申出新知识,在这过程中,蕴涵了抽象概括的方法,运用这个概括对新的实际问题进行判断,这是数学学习所特有的能力。

2、教学目标:(1)、使学生能正确判应用题中涉及的量成什么比例关系。进一步熟练地判断成正、反比例的量,加深对正、反比例概念的理解。

(2)、使学生能利用正反比例的意义正确解答应用题,巩固和加深对所学的简易方程的认识。

(3)、培养学生的判断分析推理能力。

3、教学重点:使学生能正确判断应用题中的数量之间存在什么样的比例关系。并能利用正反比例的关系列出含有未知数的等式正确运用比例知识解答应用题

4、教学难点:学生通过分析应用题的已知条件和所求问题,确定那些量成什么比例关系,并利用正反比例的意义列出等式。

5、教具:小黑板、课件

二、说学法

1、为了实现教学目标,突出重点,解决难点,利用学生已有的解决有关基本应用题的方法和比例关系的知识,提出问题,探究解决有关基本应用题的解题思路和计算方法。

2、采取自主探究的学习方式,让学生通过看、想、思、说、动等数学活动,自觉参与到知识形成的过程中,获得基本的数学知识和技能,激发学生的学习兴趣,增加学生学好数学的信心。

3、从“一题多解”的探究过程中,提高学生思考问题,解决问题的能力。沟通知识间的联系。

三、说教法

(一)、联系生活,习旧引新:

新课程标准中指出:“重视从学生的生活经验和已有的知识中学习数学和理解数学”,“教师应充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,去体会数学在现实生活中的应用价值。”遵循这一理念,课始我设计了“生活用水、包装图书等信息,”让学生通过观察,并组织学生整理信息,判断题中的相关联的量成什么比例关�

数学源于生活,生活中处处有数学,类似归一、归总的实际问题生活中素材很多。学生在生活中也有用水收费和包装图书的经验,用学生熟悉的事情引入新知,能很好地调动学生的学习积极性。在学生在交流中提取有用的信息,为下面的探究呈现素材。

(二)、合作探索,领悟内涵:

1、感知用比例解决问题的关键。

(1)我先组织学生用学过的方法自主解决问题,让学生对题中的数量关系有了初步的认识。

(2)接着让学生用学过的比例知识分析解答,我出示思考题,小组交流,并试着解决,让一部分学生体会到成功的感觉,通过订正,让大家领会到解决问题的方法。

“什么都可代替,唯有思维不可代替”。在这当中教师要逐渐打开学生独立思维的闸门,激发学生的求知欲,放手让学生独立思考,大胆实践,自己解答。在此基础上教师再给以指点和总结,这样做的目的,学生理解问题的水平不一,叙述表达方式不同,在解答问题的过程中会出现这样或那样的错误,这并不重要,重要的是让学生根据自己已有的知识和经验,参与到新知识学习的过程中,在分析问题和解决问题的能力上有所提高。体现了策略的多样化。

2、在比较中体会知识的实质。教师引导学生对上面两道题进行比较,组织学生观察、讨论、找出思考过程和计算方法上的异同点。在学生充分小组交流的基础上,引导学生形成有价值的发现和体会。

3、练习的设计有层次性。

变式练习的设计,紧扣例题,让学生在熟悉的比例关系中,进一步掌握用比例解决问题的方法,紧接着完成书中的做一做,让学生在独立完成中,评价自己的学习情况,并鼓励学生发现新的问题,有价值的问题。

用比例解决问题教学反思 28

本节课教学设计主要抓住比例解答应用题的特征进行的。首先进行复习,一是两种相关联的量成什么比例关系,二是如何判断两种相关联的量成什么比例,怎样找出等量关系。在新课的教学中,围绕比例应用题的特征设问:题目中有三种量?哪种量是固定不变的?哪两种量是变化的?变化的规律怎样?它们成什么比例?你能写出等式吗?通过学生自主探究获得新知,然后通过“练”达到巩固和提高。

本节课设计主要体现在“问”与“练”字上,怎样问,练什么,怎么练,我都做了认真的思考,深入研究,特别是在设计教学过程时把学生放在首位,考虑学生已经会什么,他们现在最需要什么。学生通过什么途径来解决,是独立思考还是合作交流呢。学生在这次教学活动中能得到什么?不同学生有什么不同的收获等等问题。做到心中有数,有的放矢。因此,一节课自始至终让学生参与体验解决问题的全过程。学生根据教师的巧妙设问,和富有启发性的引导,通过自主学习和合作交流,很快学生就掌握了新课的内容。这节课既重视比例解应用题的解题方法的教学,又鼓励解决问题策略的多样化,从中发展学生的个性,课堂结构严密,学生练得多,掌握得好。当堂验收绝大多数学生全部正确,学困生都掌握得不错。

但是,在实际教学过程中,这堂课的教学也还存在着很多的问题:

(1)对学生基础了解太少,从学生回答问题看,学生对判断哪两种相关联的量成什么比例,哪种量一定,怎样找出等量关系掌握不好,这是我备课时没想到的。学生是课堂的主体,如果课堂上学生的知识储备不够或者基本知识没过关,课堂也就失去了色彩。

(2)在教学过程中,我有时还是放不开,总是对学生不放心,这是一个不可忽视的大错。比如:在教学例6时,我完全可以放手让学生自己独立完成,但我总是担心怕学生不会做,出一些思考题让学生交流讨论,然后再做题。这样既禁锢了学生的思维,又耽误了教学时间,所以导致后面完不成教学任务拖堂。

(3) 用比例解答应用题,难度降低,正确率比较高,但是如果难度稍有提高,正确率就难说了。学生一般都不喜欢用比例方法,而喜欢用算术方法解答,很难接受用比例的知识解决这样的问题,把学生从传统的算术方法中释放出来才是问题的关键,因为习惯是难以改变,一种新的思维的注入是需要时间去改变的,所以对于用比例来解决问题必须在以后的课堂中经常提到,去改变他们传统的思维习惯。