首页 > 教学教案 > 小学教案 > 六年级教案 > 六年级数学分数除法教案【优秀15篇】正文

《六年级数学分数除法教案【优秀15篇】》

时间:

作为一位无私奉献的人民教师,常常要根据教学需要编写教案,教案是实施教学的主要依据,有着至关重要的作用。那么优秀的教案是什么样的呢?

分数除法教案 1

教学目标

使学生进一步掌握分数除法的计算方法,提高分数四则计算的能力。

教学重难点

进一步掌握分数除法的计算方法。

教学准备

教学过程设计

教学内容

师生活动

教学过程

一、揭示课题

二、计算练习

三、综合练习

四、课堂。

五、作业

1、复习法则。

问:分数除法要怎样计算?

2、计算:

5/7÷1014÷4/512/13÷8/9

三人板演。

3、练习八17

上下练习,说说是怎样想的。

问:分数加减法要怎样算?分数乘法怎样算?分数除法呢?

4、练习八18

学生口答,选择说怎样算的?

1、练习八19第一行

四人板演;计算时说明要注意的约分等问题。

2、练习八20

说说已知什么数量,要求什么数量。

练习计算。

口答算式与结果,让学生说说各按怎样的数量关系列式。

3、练习八21

问:解答这道题的数量关系是什么?

学生解答。口答算式。

为什么3/4×2/5来计算?

3、口答。

根据下面的'条件,先说出哪个是单位“1”的量,再说出数量关系式。

(1)桃树占果树总棵数的2/5。

(2)三好学生占全班人数的3/20。

(3)修好了一条路的3/7。

(4)一堆煤的1/4已经运走。

(5)这批布的2/3是花布。

单位“1”的量×几分之几=几分之几的对应数量

练习八19第二、三

分数除法教案 2

教学目标

1、使学生理解分数乘、除法应用题的相同点与不同点,能准确解答应用题、

2、加深学生对三类应用题的数量关系和内在联系的认识,提高学生的分析能力和解答应用题的能力、

教学重点

理解分数乘、除法应用题的异同点,会正确解答、

教学难点

能正确解答分数乘、除法应用题、

教学过程

一、复习引新

(一)下面各题中应该把哪个数量看作单位“1”?

1、花手绢的块数是白手绢的

2、白手绢块数的正好是花手绢的块数、

3、花手绢的块数相当于白手绢的

4、白手绢块数的倍相当于花手绢的块数

(二)教师提问

1、求一个数是另一个数的的几分之几用什么方法?

2、求一个数的几分之几是多少用什么方法?

3、已知一个数的几分之几是多少,求这个数,用什么方法?

(三)谈话导入

为了更进一步了解每一类应用题的特点,巩固解题方法,请同学们和老师一起来做下面一组练习、

二、讲授新课

(一)教学例3

1、课件演示:分数除法应用题

2、比较、

(1)我们把这三道题放在一起比较,它们有什么相同点?

相同点:三个数量是相同的;需要找准单位“1”来分析、

(2)它们有什么区别呢?

不同点:已知和所求不同;解题方法不同、

3、小结:分数应用题主要有以上三类:

(1)求一个数是另一个数的几分之几、

(2)求一个数的几分之几是多少、

(3)已知一个数的几分之几是多少求这个数、

4、解答分数应用题的方法是什么?

抓住分率句;找准单位“1”;画图来分析;列式不必急、

三、巩固练习

(一)应用题

1、一个排球36元,一个篮球40元,一个排球的价钱是一个篮球价钱的几分之几?

(1)学生独立分析列式

(2)要求根据这道题的数量关系,改编出一道分数乘法应用题和一道分数除法应用题、

2、学校有故事书36本,是科技书的,科技书有多少本?

3、学校有故事书36本,科技书是故事书的',科技书有多少本?

(二)补充条件并列式解答、

一条路长15千米,修了全长的,_________________?

(三)选择正确答案

1、修一条长240千米的公路,修了,修了多少千米?

2、修一条长240千米的公路,已经修了150千米,修了的占全长的几分之几?

240× 240÷ 150÷240 240÷150

(四)思考题

有一个两位数,十位上的数是个位上的数的、十位上的数加上2,就和个位上的数相等、这个两位数是多少?

四、课堂小结

这节课我们进行了三类题的对比练习、解决这三类题的关键是什么?

五、课后作业

(一)解答下面各题

1、六一班有学生45人,其中女生有20人、女生人数占全班的几分之几?

2、六一班有学生45人,女生占、女生有多少人?

3、六一班有男生25人,占全班的、全班共有学生多少人?

(二)校园里栽了杨树144棵,栽的松树的棵数是杨树的,校园里栽了松树多少棵?

(三)学校买了蓝墨水30瓶,红墨水24瓶、蓝墨水是红墨水的几倍?

六、板书设计

分数乘除法对比练习

1、池塘里有12只鸭和4只鹅,鹅的只数是鸭的几分之几?

4÷12=

2、池塘里有12只鸭,鹅的只数是鸭的、池塘里有多少只鹅?

12×=4(只)

3、池塘里有4只鹅,正好是鸭的只数的、池塘里有多少只鸭?

4÷=12(只)

《分数与除法的关系》教案 3

教学目标

(一)理解分数与除法的关系。

(二)学会用分数表示两个数的商。

(三)培养学生动手操作的能力。

教学重点和难点

(一)分数与除法的关系。

(二)整数除法的结果用分数表示。

教学用具

教具:投影片,3张同样大小的圆形纸片,剪刀,电脑动画录像。

学具:3张同样大小的圆形纸片,剪刀。

教学过程设计

(一)复习准备

提问:说明下面各分数的意义,它们的分数单位各是多少?各有几个这样的分数单位?

教师:如果请同学口算1÷11,能很快地得出小数商吗?如果商要

教师:上面的这道除法题,它的商可以用分数来表示。今天我们就来学习分数与除法的`关系。板书课题:分数与除法。

(二)学习新课

1.把一个计量单位平均分若干份,求每份是多少。

(1)板书例2,把1米长的钢管平均截成3段,每段长多少?

教师:说一说这道题的条件和问题。

教师板书出图。

教师:如何列式?

学生口答后板书出算式1÷3,问:为什么用除法计算?(已知总数和份数,求每份数。)

(引导学生按分数的意义来想;把1米平均分成3份,其中的一份应是1

(2)直接说出下面各题的商,再说一说怎样想的。

①把1千克平均分5份,每份是多少?

②把1米2平均分8份,每份是多少?

2.把许多个物体平均分若干份,求每份是多少。

(1)例3,把3块饼平均分给4个孩子,每个孩子分得多少?

教师:怎样列式?列式的依据是什么?

学生口答后老师板书出列式:3÷4。

教师:3÷4的计算结果用分数表示是多少呢?请同学取出自己准备的3张圆形纸片,动手分一分看该得多少?

学生动手剪分,教师巡视,巡视中可提示:该把谁拿来平均分?谁是单位“1”?平均分几份?

学生剪分完,汇报答案。(答案不统一。)

(2)教师:照你们说的,把3个饼作为单位“1”,平均分4份。我们看看下面的剪分图。展示电脑动画图像:

教师:请看一看自己的拼法是不是与图像上的相同。

问:取出的这一份是多少?

(3)老师:请观察板书:(前面的)

能看出分数与除法有怎样的关系?

学生口答后,教师说明:除法是一种运算,分数是一个数,所以被除数与分子,除数与分母之间是“相当”的关系,而不说“等于”。所以分数与除法的关系,准确的说法是:被除数相当于分子,除数相当于分母,除号相当于分数线。

教师:能用式子把这种关系表示出来吗?

学生口答,老师板书:

用字母a表示被除数,b表示除数,分数与除法的关系可以如何表示?

教师:在整数除法中除数不能为零,那么在分数中,分母有什么限制没有?

学生口答后,老师板书补充:(b≠0)

口答练习:(投影片)

(三)巩固反馈

1.(口答)用分数表示下面各题的商:

3÷7 9÷14 42÷75

m÷n (n≠0) B÷A(A≠0)

2.口答填空。(投影片)

3.口答下列各题:(口述题目)

(1)把5米的铁丝平均分7份,每份长多少米?

(2)小王骑自行车5分行了1千米,平均每分行多少千米?

(四)课堂总结与课后作业

分数除法教案 4

教学目标

1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。

2、使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力。

3、构筑探索交流的平台,体验数学学习的乐趣,增强学生学习数学的信心。

教学重难点

理解分数与除法的关系

教学准备

每人准备4张同样大小的圆片

教学过程

一、引入情境,揭示例题

口答题

1、把8块饼干平均分给4个小朋友,每人分得几块?

2、把4块饼干平均分给4个小朋友,每人分得几块?

3、把3块饼干平均分给4个小朋友,每人分得几块?

怎样列式?板书3÷4

引导:把3块饼干平均分给4个小朋友,平均每人能分到1块吗?

不满1块那该怎么表示呢?

生:小数或分数

二、实践操作探索研究

师:那怎样用分数表示3÷4的商呢?请大家拿出3张同样的圆片,把它看作3块饼,按题目的要求把它分一分,看结果是多少?

学生动手操作

教师巡视,了解学生是怎样的想的,当学生表述比较好时,教师有选择的。把圆片贴在黑板上,等集体交流时让学生说说这样分的理由。

师:接下来我们请同学汇报一下他们研究所得结果。

(生讲述这样分的理由)

教师总结:

(1)把一块饼干平均分给4个小朋友,所以就平均分成4份,每人就可分得1/4块,现在一共有3块饼干,每人就可得到3个1/4块,就是3/4块。

(2)如果把三块饼干放在一起分,每人就可以分得3块的1/4,就是3/4块。

总结:把3块饼干平均分给4个小朋友,每人分得3/4块

板书:3÷4=3/4(块)

师:如果我想把3块饼干分给5个小朋友呢?,每人分得多少块?

学生口述理由。板书:3÷5

师:想想该怎么去分?把你的想法和同桌交流下。

指名让学生说说思考过程。

板书:3÷5=3/5(块)

师:如果分给7个小朋友呢?

学生口述3÷7=3/7(块)

三、归纳总结,围绕主题

师:请同学们仔细观察上面的两个等式,你发现分数和除法算式之间有和联系?这也正是本节课我们所要学习的内容。

板书课题:分数与除法的关系

生相互交流。教师板书:被除数÷除数=

师:除法算式又可以写成什么形式?

生补充:被除数÷除数=被除数/除数

师:如果用a表示被除数,b表示除数,那么a÷b又可怎么写?

生:a÷b=a/b

师:这里的a和b可以取任何数吗?为什么?

生:除数不能为0。

师:分数和除法之间的关系,你有什么好的方法记住它们吗?

生交流讨论并回答

师总结,被除数相当于分子,除数相当于分母,除号相当于分数线。

四、巩固练习,拓展延伸

师:请大家把书本打开到第45页,马上完成“练一练”的第一小题。

集体校对。

师引导:比较上下两行有什么不同?

在学生回答的基础上,引导:用分数可以表示整数除法的商,反过来,一个分数也可以看成两个数相除。

师:接下来请大家独立完成“试一试”两小题。

然后小组交流你是怎么想的?

师:把7分米改写成用米作单位,可以列怎样的除法算式?

生:7÷10=7/10(米)

师:第二个呢?

生:23÷60=23/60(时)

师:独立完成“练一练”的第二题

集体讲评校对。

师:完成“练习八”的第一题口答

师:完成“练习八”的第三题

学生在书本上完成,

教师追问:把1米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?把2米长的彩带平均分成3份,求1份有多长,可以列怎样的除法算式?

五、课堂作业

完成“练习八”的第二题

分数除法教案 5

一、复习

1、口算分数乘法

前一段时间,我们已经学习了分数乘法,那么,谁能告诉老师分数乘法怎样计算的?说得真好。下面,我们就一起来口算几道题:

(出示)4/71/3 203/4 3/816 2/33/2

2、(复习倒数)其中当计算完2/33/2时提问:

看到这个答案,你想说什么?(乘积是1的两个数互为什么数(互为倒数))

说得不错,下面就请同学们说说下面各数的倒数分别是什么?

(出示) 3/8 4 1 2/9

3、把100千克的一桶油平均分成2分,每份是100千克的( )/( ),求100千克的1/2,列式为___。

把24千克的一袋面粉平均分成3份,每份是24千克的 ( )/( ),求24千克的1/3,列式为:_____。

同学们学得真不错,今天,潘老师就要带着大家用这些我们已经掌握的知识去学习新知识,解决新问题。

二、新授

(一)教学例1

1、教学第一种算法

例1:量杯里有4/5升果汁,平均分给2个小朋友喝,每人可以喝多少升?

读题

提问:怎样列式?(4/52)

怎样计算呢?

(1)4/5表示什么意思?(是把1升平均分成5份,取其中的4份),(边说边出示图)

从图中你能看出每份是多少米?(板书:2/5升)

那么2/5升是怎样算出的呢?

4个1/5平均分成2份,可以用4/5的分子除以2,而分母不变,就得到结果是2/5。(板书算式)

(2)补充例证

如果现在把4/5升果汁,平均分给4个小朋友喝,每人可以喝多少升?

怎样列式?(板书)。现在是把几个1/5平均分4份,每份是多少?这里的1是怎样得来的?分母怎样?

(3)观察比较

提问:(1)这两道除法算式都是什么数除以什么数?(分数除以整数 板书课题)

(4)通过刚才这两道题的计算,你们有没有发现,分数除以整数可以怎样计算?(边说边指示)。

2、教学第二种算法

(1)还有别的计算方法吗?(把4/5平均分成2份,求每份是多少?也就是求4/5的1/2是多少?可以用乘法来计算。)(板书)

(2)问:从这个算式可以看出,一个分数除以整数还可以怎样计算

通过这两种交流,使学生知道分数除以整数的方法是多样的,又能初步理解分数除以整数可以转化为分数乘以这个整数的倒数的思路。

(3)让学生做试一试的题(自主选择计算方法)

计算好了以后,再请学生说说你的思路是怎么样的

使学生进一步明确,分数除以整数,可以转化为分数乘这个数的倒数。

(4)你能用简炼的语言概括一下这种方法吗?

教师板书:分数除以整数,等于分数除以整数的倒数

(5)�

教师用红笔标注。

三、巩固练习

老师也为同学们准备了一套星级赛题,你们有信心挑战吗?

一星题:

1、课本56页的练一练第1题

做此题的`目的使学生明确当遇到分子能整除时比较简便。

可以选用这样的方法。

二星题:

2、这里还有6道题,哪些同学愿意到前面来解答的?

练一练第2、3题

让学生能根据题目灵活选择计算方法

做好以后进行集体讲解和订正

三星题:

3、老师这里还有一组辨析题,请你们看看这几道题正确吗?错在哪里?你能帮助改正过来吗?

8/94=8/91/4=2/9 2/73=2/73=6/7

8/94=8/91/4=2/9 3/73=3/71/3=1/7

师:因此,我们同学在计算时,首先要看清题目,选择正确的计算方法,计算要细心。

四星题:

4、练习十一第2题

本题的题目关键要让学生进行比较,分数乘法和除法的区别。

五星题:

1、如果a是一个不等于0的自然数,13 a等于多少

问:你能用具体的数来检验这个结果吗?

2、( )/( )3=5/18 7/( )=( )/24

四、小结

本课我们学习了什么内容?

分数除法教案 6

教学目标:

1.使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。

2.使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习的乐趣。

教学重点:理解分数与除法的关系。

教学难点:理解分数表示整数除法的商。

课前准备:课件。

教学过程:

一、激活旧知,引发思考

1.把8块饼平均分给4个小朋友,每人分得多少块?如果有4块饼呢?

学生口答列式,教师板书。

提问:这样的问题为什么用除法算?

指出:把一些物体平均分,求每份是多少,用除法计算。

2.引入新课

二、主动思考,认识新知

1.教学例2

(1)把刚才呈现的题目改为:把1块饼平均分给4个小朋友,每人分得多少块?

怎样列式?

把1块饼平均分给4个小朋友,平均每人能分到1块吗?你是怎样想的?

每人分得的不满1块,结果可以用分数表示。

那么,可以用怎样的分数表示1÷4的商呢?请大家拿出1张圆形纸片,把它们看作1块饼,按照题目分一分,看结果是多少?

(2)学生操作,了解学生是怎样分和怎样想的。组织交流,你是怎么分的?

(3)小结:把1块饼平均分给4个小朋友,每人分得14块。完成板书。

2.教学例3:

把3块饼平均分给4个小朋友,每人能分得多少块?

可以怎样列式?3÷4得数是多少?

大家拿出3张圆形纸片,把它们看作3块饼,按照题目分一分,看结果是多少?

3.独立完成

把3块饼平均分给5个小朋友,每人能分得多少块?

3除以5,商是多少?怎样用分数表示?小组交流。

4.总结归纳

请大家观察上面两个等式,你发现分数与除法有什么关系?

被除数÷除数=被除数/除数

如果用a表示被除数,用b表示除数,这个关系式可以怎样写?a÷b=a/b

讨论:b可以是0吗?(在除法中,0不能作除数;分数中的'分母,相当于除法中的除数,所以分母不能是0。)

5.教学试一试。学生尝试填空。你是怎样想的?

把7分米改写成用米做单位的数,可以列怎样的除法算式?7÷10的商用分数怎样表示?23分改写成用时作单位的数,可以列怎样的除法算式?23÷60的商用分数怎样表示?(指出:两个数相除,得不到整数商时,可以用分数表示。)

6.做练一练第1、3题

学生独立填写,要求说说填写时是怎样想的。

7.做练一练的第2题

学生填写后,引导比较:上下两行题目有什么不同?

三、练习巩固,加深认识

1.做练习八第6题

让学生看图填空。

交流:结果各是多少米?怎样从图上看出结果?

追问:如果列式计算,应该怎样列式,得数是多少

2.做练习八第7题。

让学生独立完成,交流结果。

3.做练习八第8题。

让学生独立解答,交流方法板书。

四、反思总结

今天这节课,学习了什么内容?通过学习,有什么收获?还有哪些疑问?

《分数与除法的关系》教案 7

分数与除法的关系练习题

一、填一填。(30分)

1、把单位“1”( )若干份,表示这样的( )或者( )的数叫做分数,表示其中一份的数叫做( ).

2、把单位“1”平均分成10份,其中的7份就是( ),它的分数单位是( ).有个这样的分数单位。

3、12毫升=()升38cm2=()d㎡30cm=()m123㎝3=()dm3(填分数)

4、37的分数单位是( ),它有( )个这样的分数单位。89的分数单位是( ),它有( )个这样的。分数单位。

5.被除数相当于分数的(),除数相当于分数的(),除号相当于(),商相当于()。

6.78=()÷()()÷27=427

5÷()=51123÷49=()()

7.35kg表示把3kg平均分成()份,取其中的()份,每份是()kg;也表示把()kg平均分成()份,取其中的()份,每份是()千克。

二、先填空,再根据分数除法的关系列出算式。(8分)

1.小芳每天睡眠9小时,她一天的睡眠时间占全天的()()。

2.小林看一本85页的故事书,已经看了48页,看了全书的()()

分数除法 8

教学内容:

教科书第55~56页例1及“试一试”“练一练”,练习十一第1~4题。

教学目标:

1、通过本课的学习使学生理解分数除以整数的计算的方法。

2、用两种不同的方法来理解分数除以整数的计算的思路。

3、通过观察发现并总结出分数除以整数的计算的方法。

教学重点:分数除以整数的计算的方法

教学难点:分数除以整数的计算方法的总结。

教学对策:让学生在观察,然后用自己的语言来总结出分数除以整数的计算的方法。

教学过程:

一、引入

1、通过上一单元的学习我们已经学会了如何来计算分数乘法,从今天这节课开始我们将开始学习新的内容。

2、说出下面数的倒数是多少?

3 5 9

二、新课

出示挂图让学生进行观察

例题1:量杯里有4/5升果汁,平均分给2个小朋友喝,每人可以喝多少升?

2、请学生先在左边的图中分一分再列出算式

分析:学生可能会出现以下的两种情况

情况1:把4/5平均分成2份,就是把4个1/5平均分成2份,可以用4/5的分子除以2,而分母不变,就得到结果是2/5。

情况2:把4/5平均分成2份,求每份是多少?也就是求4/5的1/2是多少?可以用乘法来计算。

3、并请学生把这两种不同的思路进行按照思路进行计算。这里要注意学生所想的要和他的思路所对应。

4、两种方法让学生进行充分的讨论。

通过这两种交流,使学生知道分数除以整数的方法是多样的,又能初步理解分数除以整数等于分数乘以这个整数的倒数的思路。

5、让学生做试一试的题

通过本题的计算使学生先用刚才的方法来计算。

分析:用刚才的方法来进行计算肯定会发现问题。因为在这的分子4不能被3进行整除,所以迫使学生使用刚才所讨论的第2个方法来进行计算。

计算好了以后,再请学生说说你的思路是怎么样的

使学生进一步明确,分数除以整数,可以转化为分数乘这个数的倒数。

6、再请学生进行交流

我们该如何计算分数除以整数?

交流好以后请学生进行回答。

小结:通过刚才我们的学习我们知道分数除以整数的计算的方法是多样的,但用分子平均分成几份的这种方法有局限性,我们一般选择的方法是除以一个数等于乘以这个数的倒数。

三、课本56页的练一练

1、第1题

做此题的目的使学生明确当遇到分子能整除时比较简便。

可以选用这样的方法。

2、第2题

注重样让学生用乘法来计算

做好以后进行集体讲解和订正。

3、第3题

学生独立做,能根据题目灵活选择计算方法。

4、练习十一第2题

本题的题目关键要让学生进行比较,分数乘法和除法的区别。

四、小结

今天学习了什么内容?我们怎么来计算分数除以整数?

课前思考:

例题1结合具体的情境,帮助学生掌握分数除以整数的计算方法,书上介绍了两种方法,其中第一种方法有一定的局限性,即分子必须是整数的倍数,而第二种方法具有普遍意义。

我准备这样处理:复习导入部分的第一、二两个环节同潘老师处理方法,第三个环节改为例题1的准备题:(1)饮料瓶中有2升饮料,平均分给2个小朋友喝,每人可以喝多少升?(2)饮料瓶中有1.2升饮料,平均分给2个小朋友喝,每人可以喝多少升?

再引出例题1,让学生体会到要求“每人可以喝多少升?”这个问题,只要用总共饮料的升数÷喝饮料的人数=每人喝多少升。从而得出算式4/5÷2,在教学分数除以整数的计算方法时,我准备给学生开放的思维空间,让学生自己计算,因为数据小,部分学生可以结合生活经验得出结果,然后让学生说明计算结果的合理性,说说是怎样想的?从而得出两种不同的计算方法,对这两种方法都应给予同样的肯定。然后再出示试一试,让学生用自己喜欢的方法进行计算,在这题的计算中,学生会发现第一种计算方法的局限性,从而比较出两种计算方法的优劣。

由于本课教学内容比较简单,潘老师补充一些拓展练习,增加思维难度,让学有余力的学生也有探究的兴趣。

课前思考:

因为周一时潘老师执教了《分数除以整数》这一课时,听完课后,我就想其实这一课的难点是如何让学生在理解的基础上掌握分数除以整数可以转化为分数乘这个整数的倒数。要突破这一难点要借助学生已有的知识基础,即分数意义和分数乘法的意义。所以,我想在复习铺垫部分增加一个练习,让学生说说“4/5升、3/7米、8/9千克”等分数的意义,然后再让学生练习这样的题目:把3米的绳子平均分成4份,每份是多少米?一根3米的绳子,用去了1/4,用去了多少米?等等类似的题目。新授部分要让学生尝试用不同方法计算,然后充分体验有些方法的局限性,自然而然地接受本课时所要学习的新方法。巩固练习中要关注不同层次的学生的学习情况,及时根据学生中出现的问题调整教学行为。分数乘法和分数除以整数计算的比较也很重要,要利用好教材提供的对比练习,帮助学生进一步掌握本课时的计算方法,提高计算正确率。

课后反思:

计算课上如何让学生经历算法的推导过程,体验探索的过程是非常重要的。反思今天的数学课上,我按照课前设计的教学思路,先组织学生复习了分数的意义,然后又出示了两道实际问题进行对比,有了这样的铺垫后,学生在学习例题时自然而然地想到了分数除以整数可以转化为分数乘整数的倒数,当然有仍然有少数学生想到了其他方法。这样的情形不由得让我反省自己是否铺垫得过多,变学生自由探索为教师领路了,缺少了学生的独立思考和探索。不过,令我感到欣慰的是由于课前复习中突出了分数除法和分数乘法意义,所以在理解分数除以整数为什么可以转化为分数乘这个整数的倒数时,学生基本都能解释得头头是道,而且在巩固练习部分也是很自然地选择了转化为乘法来计算。

以后再次执教本课的话,我想在组织学生探索时,教师不能包办得太多,这样会让学生失去了探索的乐趣。认知冲突是一个人已建立的认知结构与当前面临的学习情境之间暂时的矛盾与冲突,是已有的知识经验与新知识之间存在某种差距而导致的心理失衡。认知冲突的形成能促进学生解决这一冲突的需要,从而激发学生的求知欲和探索心向。而认知冲突的形成,离不开教师的引导与激发。本课中,出示例题后学生往往会把算式和得数一下就说出来,这时就需要教师及时抓住这一制造认知冲突的良好契机。教师可以顺势问学生:“4/5÷2真的等于2/5吗?你有哪些办法说明这个结果是对的?从这些办法中,你能找到分数除以整数的一般算法吗?”开放而有挑战性的问题能激励学生主动探索。所以在设计教学预案和执行教学预案时,作为学生学习活动组织者和引导者、促进者的教师,要不断提高组织学生主动探索的有效性,这样才能切实提高课堂学习的有效性。

课后反思:

学习这节课时,我增加了两题准备题,帮助学生理解这样列式的原因。然后将教学重点定位在“如何计算?你是怎样想的?你有什么办法让别人听懂你的计算方法是正确的?请想办法来解释清楚。”于是,学生投入到积极的思考中,有学生结合生活实际,体会到“平均分给两个人喝,那么每人就喝到这些饮料的一半(1/2)”,所以求每人喝多少,就是求4/5的1/2是多少,从而想到了分数乘法。也有学生从分数的意义来解释,当我提醒学生可以画图分析时,学生的解释更加清楚了。此时选择两种方法的学生各占一半。两种方法在解决例题1时,看不出方法的优劣。当让学生选择自己喜欢的方法解决试一试时,所有的学生都选择了方法一,追问原因,让学生更加深刻体会到方法二的局限性。

从作业情况看,计算方法掌握不错,但还有部分学生在约分时没有约成最简分数,看来约分的技能有部分学生不过关。

分数除法教案 9

教学目标

1.在理解分数除法算理的基础上,正确熟练地进行分数除法的计算。

2.运用所学的分数除法的知识,解决相应的`实际问题。

教学重难点

教学重点:正确熟练地进行分数除法的计算。

教学难点:解决相应的实际问题。。

教具准备课件

设计意图教学过程特色设计

正确熟练地进行分数除法的计算。

教学过程

一、基础知识练习:

(一)计算:

2/13÷28/9÷43/10÷35/11÷522/23÷2

3/10÷223/24÷2617/21÷518/9÷713/15÷4

学生独立计算,教师巡视指导,订正时让学生说一说是怎样计算的

(二)教材P36第13题,学生独立计算。

二、深入练习

教材P36第14题,学生板演,集体订正。

三、解决问题

第7题学生独立解答。

第8题学生解答时提示学生需要先统一单位。

小结共同特点:都是求一个量里包含多少个另一个量,都用除法计算。

四、作业练习:

教材P36第12,15,16题。

学生先读题,说一说解题思路,然后学生列式计算。

分数除法教案 10

【教学目标】

1、借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

2、掌握一个数除以分数的计算方法,并能正确的计算。

3、培养学生乐于交流、喜欢数学的情操,感受数学来源于生活。

【教学重点】

一个数除以分数的计算法则推导过程。

【教学过程】

课前谈话:

《皇帝内经》中说春天是一个生发的季节,对于你们小孩子来说,要多运动才能长高个,那么春天还是一个美容的季节,爱美的女士们在这个季节要注重皮肤护理,多做面膜多补水。春天还是一个开始减肥的最佳季节,夏天可以穿漂亮的衣服,美美的。和老师聊天长知识吧?老师希望你们像我一样,多留心观察生活,积累生活经验。

一、课前导入

昨天毕老师问我,夏天马上到了,有没有一种快速减肥的方法?于是我给毕老师介绍了一款素食减肥营养饼。这素食减肥营养饼,胖子吃了能变瘦,瘦子吃了能变壮,于是我给办公室几个老师限量赠送四张饼,并制定了饮食计划。孙老师每天吃2张,白老师每天吃1张,毕老师每天吃半张,袁老师每天吃四分之一张,听到这里,你想知道什么?

生1:谁每天吃最少?(这都知道了)

生2:他们能吃几天?(太棒了)

二、新知探究

(一)探究整数除以分数

1.下面请同学们结合学习指南,完成学习单上第一部分内容。

指名读学习指南。(附:学习指南)

1、独立思考:

(1)分一分:把分饼的过程用算式记录下来。

(2)想一想:结合分饼的过程,总结算法。

2、合作交流:与组员分享自己的想法。

师:明白学习指南的要求了吗?现在开始。(学生完成,教师巡视抽取样本)

(学生独立完成学习单,时间3分钟。学生小组讨论时间2分50秒。)

2.组织汇报:

师:请你结合分饼过程说一说算式中每一个数字的意义。

生1:第一个算式:4÷2=2,4表示4张饼,每天吃2张,2表示能吃2天。

第二个算式:4÷1=4,4表示4张饼,每天吃1张,4表示能吃4天。

第三个算式:4÷=4×2=8张饼,每天吃这张饼的二分之一,每张饼分两份,一张饼吃两天,4乘2,表示吃8天。

第四个算式:4÷=4×4=16张饼,每天吃这张饼的四分之一,每张饼分四份,一张饼吃四天,4乘4,表示吃16天。

师:你说的太棒了,我还想请你再说一说,算式中4乘2和4乘4中的2和4在图中表示什么?

生:2表示每张饼分成2份,一张饼吃2天,4张饼可以吃8天,4表示4分之一的倒数,代表一张饼吃4天,4乘4等于16天。

师:太棒了,给她点掌声。这个同学解释了2遍,我相信你们一定能听懂。

这两个算式是整数除以分数,通过这两个算式的计算过程你发现了什么?

生:一个数除以另一个数等于一个乘这个数的倒数。

师:一个数和另一个数我们用整数除以分数代表更准确些。

观察这四个算式有什么相同点和不同点。

生:他们每人都有四张饼

师:这是从表象上看,我们可以算式更深层次去分析。前两道题是整数除以整数的'除法算式,后两道是整数除以分数的除法算式,他们都是求4里面有几个除数。也就是说整数除法算式和分数除法算式意义有什么关系?

生:是不是可以把分数除法转化为分数乘法?

师:no,我是说意义上,前两个和后两个算式都是在求4里面有几个除数,也就是说整数除法意义和分数除法意义有什么关系?就两个字。

生:相同

师:有什么不同点?

生:以1为分界线,1往上,商比被除数小,1的话,商和被除数相等,1往下,商比被除数大。

师:说的不错,但是就以这两个题,其实我们在找不同点的时候,可以从计算方法上去分析。前两道整数除以整数除法你是怎么计算的,后两道整数除以分数你是怎么计算的?

生:整数除以整数直接除,整数除以分数把分数变成它的倒数。

师:说的特别好,掌声送给他。奖励20分当家币。

(二)探究分数除以分数

演算法验证

师:刚才我们结合分饼的过程掌握了整数除以分数计算方法,那么这种方法针对分数除以分数也同样适用吗?我们来看这道题,(÷)谁会算?

生:÷,我打算把变成倒数,用乘,3和9约分,4和8约分,最后等于。

师:你是利用整数除以分数计算法则来计算分数除以分数的,但是这只是一个猜测,没有说服力,我们需要验证,怎样来验证分数除以分数也可以转化为分数乘法来计算?大家想,我如果我们用刚才简单的分饼初级操作来验证力不从心。老师给大家介绍一种新的方法,叫做演算法。演算法是你经过深入学习数学常用到的一种方法。根据知识的新旧承接,利用旧知识迁移、转化,算出结果,要想用演算法验证整数除以分数同样适用于分数除以分数需要用到哪些旧知识?

生:商不变的性质

师:对,你怎么这么聪明!你怎么想到的?

生:两个数互为倒数,相乘是1,乘等于1,所以除以,用乘。

师:还需要用到哪些知识?提示:分数除法就要用到分数与除法的关系?

生:a÷b=b分之a,b不等于0

师:太棒了,商不变的性质用文字说明一下吗?

生:被除数和除数同时乘或除以不为0的数,商不变。字母表达式里的C表示什么(相同的倍数)

师:还有除数的性质

知识链接:

1.分数与除法的关系:b分之a=a÷b,b不等于0

2.商不变的性质:a÷b

=(a×c)÷(b×c)

=(a÷c)÷(b÷c)【c≠0】

3.除法性质的扩展应用:a÷b÷c=a÷(b×c)a÷(b×c)=a÷b÷c

a÷(b÷c)=a÷b×c

生:A除以B除以C等于A除以B乘C的积

师:还有除法性质的逆运算,还有性质扩展。

请同学们利用这些知识链接小组合作完成学习单上的第二部分内容

老师巡视,抽取样本(独立完成时间:1分25秒。小组合作时间:3分钟)

师:同学们想出验证方法

生1:根据商不变性质验证(附:验证方法)

师:说的特别好,为什么。没想打到你们验证出来,我在备课时想到一种验证方法,谁看懂老师的方法?结合每一步说一说运用了什么?

指名回答

师:分数与除法关系及除法性质应用这些步骤要为了说明什么?

生:一个数除以另一个数等于这个数乘另一个数倒数

(三)探究分数除法法则

师:整数除以分数对分数除以分数同样适用。昨天和孟老师学习分数除以整数,今天学习分数除以分数,其实这些都是分数除法,所以算法及算理是相同。用一句话总结分数除法算法法则、

生:除以一个数等于乘这个数倒数

师:计算分数除法转换为分数乘法计算

虽然我们只有一节课的缘分,但是你从我这里学习的不是有限的知识,而是学习数学的思想方法、习惯。我有一个习惯,把数学文字用哪个字母表达出来。现在请同学们用字母表达式表达分数除法的计算法则。

生:a÷b=a×。

师:对b做说明

生:b不等于0

师:我们接下来进行一场实战演习。指名读学习指南。老师巡视

(学生完成时间:3分钟10秒小组讨论时间:5分钟)

师:出示学生样本,请学生讲一讲填表过程

生:根据除数特征填表,除数大于1,商小于被除数,除数等于1,商等于被除数,除数小于1,商大于被除数。

师:解释一下字母表达式。

存在疑问:

1.只能用ABC表示吗?(任意)

2.字母只能代表分数吗(分数,小数,整数)

师:计算分数除法注意什么?

生:除以一个数要变成乘这个数的倒数。

师:总结:变-不-变(除号变乘号除数不变不除数变倒数变)

这有一道题,说思路

总结:小数,分数在一起,解决策略是什么?

生:小数变分数

三、课堂总结:不管计算加减乘除,先同意数的形式,再计算。

你们不仅凭自己收获数学知识,还掌握数学方法思想解决策略。同学们你们太棒了!

分数除法 11

教学内容:

教科书第62页例5及“试一试”“练一练”,练习十二第1~3题。

教学目标:

1、使学生联系对“求一个数的几分之几是多少”的已有认识,学会“已知一个数的几分之几是多少求这个数”的简单实际问题,进一步体会分数乘、除法之间的内在的联系,加深对分数表示的数量关系的理解。

2、使学生在探索解决问题方法的过程中,进一步培养学生独立思考等能力。

重难点:

使学生联系对“求一个数的几分之几是多少”的已有认识,学会“已知一个数的几分之几是多少求这个数”的简单实际问题,进一步体会分数乘、除法之间的内在的联系,加深对分数表示的数量关系的理解。

教学过程:

一、导入

出示例题5的图,小瓶标注600ml,大瓶标注?ml

启发:这两瓶果汁,从图中你知道了什么?

学生口答后,追问:根据图中的已知条件,你能求出一大瓶果汁有多少毫升吗?为什么?

提出要求:如果让你补充一个条件表示这两瓶果汁数量关系,你打算怎么样补充条件?

学生可能补充:大瓶的果汁比小瓶多300毫升,大瓶是小瓶的3/2等等,教师参与学生的交流并出示:小瓶里果汁是大瓶的2/3

引导:根据老师补充的这个条件,你能求“一大瓶果汁有多少ml吗?

二、探究

1、教学例题5

提问:小瓶里的果汁是大瓶的2/3,这个条件中的2/3是哪两个数量比较的结果?

提问:把哪个数量看做单位1,单位1的2/3是哪个数量?

提出要求:你能根据上面的讨论,找出题目中的数量之间的相等的关系吗?

先请学生互相说,再请全班说。

板书:大瓶果汁量×2/3=小瓶果汁的量

启发:现在你准备如何来进行解决?

在学生回答:可以列方程后,追问:可以怎么样列方程?

根据学生的回答,板书:

解:设:一大瓶果汁有x毫升。

x×2/3=600

学生完成课本上的解方程,并指名板演

启发:x=900是不是正确的解呢?你会进行检验吗?

让学生进行检验,并交流检验的方法

2、教学试一试

学生读题后,提问:你能根据题目意思说出两个分数之间的含意吗?在讨论中明确:1/2表示已经喝的是一盒的1/2;而2/5l表示已喝的牛奶升数。

启发:根据对题意的理解,你能先把数量关系补充完整吗,再解答吗?

学生解答以后,再让学生说说怎么想的?

三、练习

1、做练一练

要求学生独立的做,提问:你是怎么样想的?

2、作练习十二的第1题

先让学生把数量关系补充完成,再解答。学生完成以后,指名说说思考的过程。

3、做练习十二的2、3题

先让学生独立的解答,再根据完成情况进行点评。

四、小结

今天这节课,你学到了什么内容?

课前思考:

例题5是已知一个量的几分之几是多少,求这个量。这类实际问题的顺向思维是根据关键句写出数量关系式,再列方程解决。但由于用方程解答需要写出“解设------为x”,解方程的过程也比较麻烦,所以如果让学生自由选择的话,估计很多学生会选择用算术方法解答。如何让学生从一开始就体会到用算术解的优越性?我想对本课的教学做如下调整:

一、找找“1”的量是什么?再将数量关系式补充完整。

1、男生的人数是女生的4/5

( )的人数×4/5=( )的人数

2、一条路,已经修好了1/5。

( )的长度×1/5=( )的长度

3、9月份实际用电量比8月份少1/4

( )用电量×1/4=( )用电量

4、小瓶里的果汁是大瓶的2/3

( )的果汁量×2/3=( )的果汁量

二、新授

1、接着复习题,如果小瓶里的果汁有600毫升,那么大瓶里的果汁有多少毫升?你准备怎样解答?你是怎样想的?引导学生发现此时根据数量关系的分析,应该采用方程解很好理解。

2、让学生独立解答,指名板演。

3、评价板演题,分析情况。

4、再出示:如果知道大瓶里的果汁是900毫升,怎样求小瓶里有多少毫升?你是怎样想的?为什么现在直接用算术方法解答。

5、总结解决分数实际问题的思考过程:

(1)找关键句,分析单位“1”的量,找到数量关系式。

(2)根据数量关系分析,确定解答方法。(方程解还是算术方法解)

(3)列式解答。

(4)检验。

三、巩固练习

(同潘老师设计)

课前思考:

找数量关系式——列方程解题的关键

本课时教学的这道例题的教学重点是为什么用方程解答,以及怎样列出方程。分析数量关系是解决实际问题的一个重要步骤。解答分数应用题,要抓住分数的意义分析数量关系。学生读题后要思考 “大瓶和小瓶的果汁量有什么关系”,要仔细领会“小瓶的果汁量是大瓶的2/3”的含义。联系“求一个数的几分之几是多少,用乘法计算”这个概念,写出数量关系式。在“大瓶的果汁量×2/3=小瓶的果汁量”这一数量关系式中,小瓶果汁量已知,求大瓶的果汁量,显然可以列方程解答。但实际教学中如果有学生想到用除法计算也要加以肯定。因为相对于学习困难生来讲,用列方程的方法便于思考和理解。所以不能把这类题规定学生一定要用方程解,这违背了编者的意图。

“试一试”和练习十二第1题,都要求学生先把数量关系式补充完整,再解答。在教学列方程解决实际问题的起始阶段,提出这样的要求是必要的。能进一步突出解决实际问题要分析数量关系,帮助学生掌握分析数量关系的方法,体会列方程解决实际问题的特点。在基本掌握了思考的要领和方法之后,有些学生如果感悟到求单位“1”的量应用除法计算也未尝不可。

课后反思

这节课学习的分数除法应用题是在学生掌握了分数乘法应用题以及分数除法的意义和计算法则之后进行教学的,通过对分数乘法应用题的转化,使学生了解分数除法应用题的特征,并借助线段图,分析题目中的数量关系(这是本节课的重点也是难点),根据数量关系列出方程。

在巩固练习中,我通过鼓励学生根据条件把数量关系补充完整,增加了对同一个问题根据算式补充条件的练习,拓展了学生的思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新思维。

课后反思:

例题5是典型的分数除法应用题,但现在的新教材屏弃了原老教材对单位“1”已知还是未知的判断,从而确定解答方法是乘法还是除法的思考方法。引导学生对关键句分析,找“单位1”的量,分析数量关系,这样将分数乘除法应用题统

从今天课堂表现看,思考解答方法学生能掌握了,但从对关键句的分析中,发现部分学生根据关键句找数量关系有一些困难,直接导致解答方法不正确。

课后反思:

因为昨天的数学课上,我安排了分析数量关系式的练 接着,我再将这一题改为例题5,并组织学生再次分析数量关系式,学生们发现和刚才一题的数量关系式相同,但是这一题中已知小瓶果汁量,要求大瓶果汁量,我问学生“你会解决这个问题吗?”学生独立尝试解答这一题,在交流时大部分学生根据刚才分析的数量关系式列出了方程。在随后的练习中,我再次要求学生先根据题中的关键句分析数量关系式再解答,巡视学生练习情况时也特别关注学生分析数量关系式的正确率。

课堂作业中,学生们完成得不错,都能先写出数量关系式再列方程解答。看来,明天的课上可以让他们学习用除法直接解决这类数学问题。

分数除法教案 12

教学目标

知识目标:

体验整数除以分数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

能力目标:

培养学生动手动脑能力,以及判断、推理能力。通过分析的出结论。

情感目标:

培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

教学重点

整数除以分数的。计算法则推导过程。

【教学难点】

理解一个数除以分数的计算法则的推导过程

教学过程

一、创设情境导入新课

唐僧师徒西天取经路上,有一天,孙悟空化了4张饼回来八戒急着要吃,孙悟空为难八戒说:“想吃饼也容易,先回答几个问题,答上来就吃!”这下可馋坏了八戒,聪明的小朋友,你有什么好办法来帮帮八戒吗?

二、自主探究合作交流

1、小组活动(1)出示教材27页“分一分”的第(1)、(2)题学生拿出准备好的圆片代表饼,动手分一分。

每2张一份,可以分成多少份?4÷2=2(份)

每1张一份,可以分成多少份?4÷1=4(份)

师:每1/2张一份,可以分成多少份?

学生动手操作,组内交流,把每个圆都平均分成2份,一共可以分成8份。4÷1/2=8(份)

师:每1/4张一份,可以分成多少份?

学生对那个手操作,把每个圆片都平均分成4份,一共可以分成16份。

4÷1/4=16(份)

(1)出示教材27页“画一画”学生在练习本上画。在组内交流计算方法。

(2)学生独立完成教材28页“填一填”“想一想”师:通过刚才的“分一分”、“画一画”、“填一填”、“想一想”等活动,你发现了什么?

生:一个数除以分数等于乘这个分数的倒数。

1、学生独立完成28页的“试一试”。

集体反馈,同桌之间订正。

师:通过刚才的计算你发现了什么?

生:一个数除以一个数(零除外)等于乘这个数的倒数。

三、课堂练习,巩固运用书本练一练

四、课堂小结畅谈收获

聪明的小朋友们,八戒在你们的帮助下吃到了饼,也有了新的收获,你们知道它的收获是什么吗?(学生谈收获)

五、板书设计

整数除以分数

除以真分数商大于整数

整数除以分数

除以假分数商小于整数

除以1商等于整数

六、教学反思

本节课是北师大版数学第十册第三单元《分数除法》中的第三节课。本节旨在借助图形语言,在操作活动中理解一个数除以分数的意义和计算方法。参赛者信息:姓名:杨毛毛

《分数与除法的关系》课堂教案设计 13

课时目标

①进一步理解分数与除法的关系,并能运用这一关系解决有关的实际问题。②培养学生迁移类推能力。③知道“事物间在一定的条件下是可以相互转化的观点”。

教学及训练

重点求一个数是另一个数的几分之几的应用题。

教学内容和过程教学札记

一、创设情境

1.口答:30分米=米180分=()时

练习后引导学生回顾把低级单位的名数改写成高级单位名数的方法。

分数除法教案 14

教学目标:

1、使学生结合具体情境,探索并理解分数与除法的关系,会用分数表示两个整数相除的商,会用分数表示有关单位换算的结果;能列式解决求一个数是另一个数的几分之几的简单实际问题。

2.使学生在探索分数与除法关系的过程中,进一步发展数感,培养观察、比较、分析、推理等思维能力,体验数学学习的乐趣。

教学重点:理解分数与除法的关系。

教学难点:理解分数表示整数除法的商。

课前准备:课件。

教学过程:

一、激活旧知,引发思考

1、把8块饼平均分给4个小朋友,每人分得多少块?如果有4块饼呢?

学生口答列式,教师板书。

提问:这样的问题为什么用除法算?

指出:把一些物体平均分,求每份是多少,用除法计算。

2、引入新课

二、主动思考,认识新知

1、教学例2

(1)把刚才呈现的题目改为:把1块饼平均分给4个小朋友,每人分得多少块?

怎样列式?

把1块饼平均分给4个小朋友,平均每人能分到1块吗?你是怎样想的?

每人分得的不满1块,结果可以用分数表示。

那么,可以用怎样的分数表示1÷4的商呢?请大家拿出1张圆形纸片,把它们看作1块饼,按照题目分一分,看结果是多少?

(2)学生操作,了解学生是怎样分和怎样想的。组织交流,你是怎么分的?

(3)小结:把1块饼平均分给4个小朋友,每人分得14块。完成板书。

2、教学例3:

把3块饼平均分给4个小朋友,每人能分得多少块?

可以怎样列式?3÷4得数是多少?

大家拿出3张圆形纸片,把它们看作3块饼,按照题目分一分,看结果是多少?

3、独立完成

把3块饼平均分给5个小朋友,每人能分得多少块?

3除以5,商是多少?怎样用分数表示?小组交流。

4、总结归纳

请大家观察上面两个等式,你发现分数与除法有什么关系?

被除数÷除数=被除数/除数

如果用a表示被除数,用b表示除数,这个关系式可以怎样写?a÷b=a/b

讨论:b可以是0吗?(在除法中,0不能作除数;分数中的分母,相当于除法中的除数,所以分母不能是0。)

5、教学试一试。学生尝试填空。你是怎样想的`?

把7分米改写成用米做单位的数,可以列怎样的除法算式?7÷10的商用分数怎样表示?23分改写成用时作单位的数,可以列怎样的除法算式?23÷60的商用分数怎样表示?(指出:两个数相除,得不到整数商时,可以用分数表示。)

6、做练一练第1、3题

学生独立填写,要求说说填写时是怎样想的。

7、做练一练的第2题

学生填写后,引导比较:上下两行题目有什么不同?

三、练习巩固,加深认识

1,做练习八第6题

让学生看图填空。

交流:结果各是多少米?怎样从图上看出结果?

追问:如果列式计算,应该怎样列式,得数是多少

2、做练习八第7题。

让学生独立完成,交流结果。

3、做练习八第8题。

让学生独立解答,交流方法板书。

四、反思总结

今天这节课,学习了什么内容?通过学习,有什么收获?还有哪些疑问?

分数除法 15

教学目标:

1、通过本课的复习使学生能很好的掌握本单元所学的知识,能正确 的计算分数的除法。

2、全盘对本单元的知识有个全面的了解,解决在学习时所遇到的问题。

3、能很好的计算分数乘除混合运算的题目。

教学重点:分数除法的计算的方法。

难点:分数乘除的混合运算的运算的计算的正确率

教学过程:

一、复习回顾

小组讨论

1、怎么样来计算分数除法

请学生进行讨论,讨论好以后 再请学生进行回 答。

2、教师强调:在计算分数除法的时候我们除以一个数等于乘以这个数的倒数。

请生说说你是怎么来理解这句话的。

二、进行练习

1、做课本66的1

请学生直接的在课本上进行口算,口算的时候让学生要看清题目,注意区分乘和除。

学生做好了以后再请学生进行口答。

对于做错的题目,让请学生自己来分析下错误的原因是什么?

2、做第2题

前面4题可以让学生独立的做,做好了以后再请学生说说计算的方法是怎么样的?

并请学生上黑板进行板演。

进行集体订正。

3、对比练习

1) 城东小学六年级有学生450人,占全校人数的2/9,全校有学生多少人?

2)城东小学有学生450人,六年级占其中的2/9,六年级有学生多少人?

4、做66页第4题

请学生独立的做,做好了以后请学生分析一下说说你是怎么想的?

做好以后请学生进行板演

5、根据方程或算式,将应用题补充完整。

1)、120×3/8

( ),苹果树的棵数是梨树的3/8,( )?

2)、3/8x=120

( ),苹果树的棵数是梨树的3/8,( )?

3)、120+120×3/8

( ),苹果树的棵数是梨树的3/8,( )?

请学生独立的做,做好了以后请学生说说是怎么想的?

三、布置作业

做66页第5~7题

课前思考:

1、在计算练习中,可增加以下练习,帮助学生进一步体会分数计算中的一些规律。

在( )里填上“>”“<”“=”

4/7×1/3( )4/7 4/7×4/3( )4/7

4/7÷1/3( )4/7 4/7÷4/3( )4/7

4/7÷1( )4/7 4/7×1( )4/7

先让学生独立思考,再说说判断的结果和理由。

2、在解决实际问题时,要紧紧围绕数量关系的分析来帮助学生掌握分数应用题的解答方法。

3、加强对比有利于学生辨析什么情况下列算式解答,什么情况下列方程式方便。

课后反思:

通过今天的复习整理,部分学生已初步感受到单位"1"的量未知,列方程解答,实际也可以用分数除法解答。于是我及时引导,再次让学生体会,从而理解乘除之间互逆关系。

在今天学习第4题的练习中,结合具体题目,补充了工作效率、工作时间、工作总量三个数量之间的关系,并结合学生体会到的分数乘除法之间的关系再次体会到列方程解与分数除法解的优劣。

在处理第7题的练习中,学生对变化着的“1”不注意,部分学生将国土面积乘5/2等于草地面积。归其原因还是没有掌握分数应用题数量关系。

课前思考:

我想本课时的教学重点之一是通过练习使学生进一步掌握分数除法及分数乘、除法的计算练习,要提高学生计算能力,尤其是计算正确率要提高,并及时指出学生中还存在的哪些计算方面的不良习惯。

教学时我想这样安排:第一环节进行口算练习,除了完成教材上的第1题,还要增加一些分数乘法、分数加、减法的口算。学生口算完成后要及时了解口算正确率并针对存在的共性问题进行讲评。第二环节进行分数除法练习,先完成教材上的第2题,专项进行计算练习,课堂上要给学习困难生板演的机会,让他们上来计算,教师及时了解他们计算中的问题,及时辅导。第三环节进行解方程的练习,第四环节进行一些解决实际问题的练习,主要是让学生分析教材上第4-7题的数量关系。

通过单元练习课要及时发现学生学习中还存在哪些问题,及时进行补救,并关注优秀学生,提供他们发展的空间。

课后反思:

通过今天的复习,学生能进一步反思并总结分数除法的计算方法,并进一步沟通分数除法与分数乘法的关系。

在做第7题时,部分学生对连续两问的应用题有困难,而且两题的单位“1”是变化的,国土面积是已知的,森林面积是未知的。正如高教导说的原因还是没有掌握分数应用题数量关系。我想在下节课在这方面还要加强训练。

课后反思:

按照我的课前设想,我将今天复习课的重点放在分数除法计算上,目的在于使学生进一步理解分数除法的计算方法,能熟练、正确地进行分数除法、连除、乘、除混合运算。回顾今天的课堂教学,在复习整理分数除法计算方法这一环节中有点粗糙,如第1题是直接写得数,对于一些学生来说,计算时如果不写出计算过程直接写得数可能困难较大,那么我要适当指导学生如何进行口算的方法。另外,在练习第2题和第3题时,我先让学生独立计算,然后请了几位学生板演,最后结合板演情况进行了讲评,主要是针对学生错误之处分析了错误原因,在这之后还可以让学生同桌之间互相批改一下这些计算练习,看看彼此做得对不对,错误原因是什么。

从课堂作业情况看,学生在计算方面的正确率有所提高,但还是不如人意。接下来,在计算方面还要多些练习,尽量提高计算正确率。

对于分数除法计算,到目前为止,我对学生的要求是写出计算过程,哪怕是要求直接计算的题目也是同样如此。因为我觉得分数除法计算直接写出得数确实有点难度,特别是要约分的习题。如果遇到特殊的分数除法,例分数除以整数,且分子是除数的倍数的,这样的习题直接写得数是比较简单的。等学生分数除法计算正确率与速度提高了,再逐步提高要求,要求直接写得数。